Skip to main content

Experimental Methods for Studying Kingella kingae

  • Chapter
  • First Online:
Advances in Understanding Kingella kingae

Part of the book series: SpringerBriefs in Immunology ((BRIEFSIMMUN))

  • 280 Accesses

Abstract

Kingella kingae is a naturally competent organism, allowing the use of natural transformation as an efficient mechanism for introducing exogenous DNA into the organism and facilitating genetic manipulation. While no plasmids for the introduction and extrachromosomal replication of cloned DNA into K. kingae have been identified, the generation of targeted mutations in the chromosome is a relatively straightforward process. Gene deletions, site-directed mutations, gene complements, and random transposon libraries have been generated in K. kingae, all relying on insertion of a selectable antibiotic resistance marker into the chromosome. Beyond genetic manipulation, a variety of techniques for isolation of K. kingae surface factors such as type IV pili, outer membrane proteins, polysaccharide capsule, and a secreted exopolysaccharide have been developed, largely based on methods used for research on other gram-negative bacteria. Methods for circumventing the activity of the potent K. kingae RTX toxin to enable investigation of the interaction of the organism with eukaryotic cells in vitro have been developed. Lastly, a juvenile rat intraperitoneal infection model is the only in vivo model shown to demonstrate virulence differences between different clinical isolates of K. kingae and between wild-type and isogenic mutants lacking putative virulence factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yagupsky P (2004) Kingella kingae: from medical rarity to an emerging paediatric pathogen. Lancet Infect Dis 4(6):358–367. doi:10.1016/S1473-3099(04)01046-1

    Article  PubMed  Google Scholar 

  2. Yagupsky P (1999) Use of blood culture systems for isolation of Kingella kingae from synovial fluid. J Clin Microbiol 37(11):3785

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Basmaci R, Bidet P, Jost C, Yagupsky P, Bonacorsi S (2015) Penicillinase-encoding gene blaTEM-1 may be plasmid borne or chromosomally located in Kingella kingae species. Antimicrob Agents Chemother 59(2):1377–1378. doi:10.1128/AAC.04748-14

    Article  PubMed  Google Scholar 

  4. Banerjee A, Kaplan JB, Soherwardy A, Nudell Y, Mackenzie GA, Johnson S, Balashova NV (2013) Characterization of TEM-1 beta-lactamase producing Kingella kingae clinical isolates. Antimicrob Agents Chemother 57(9):4300–4306. doi:10.1128/AAC.00318-13

    Google Scholar 

  5. Porsch EA, Kehl-Fie TE, St Geme JW 3rd (2012) Modulation of Kingella kingae adherence to human epithelial cells by type IV Pili, capsule, and a novel trimeric autotransporter. mBio 3(5). doi:10.1128/mBio.00372-12

  6. Starr KF, Porsch EA, Seed PC, St Geme JW 3rd (2016) Genetic and molecular basis of Kingella kingae encapsulation. Infect Immun 84(6):1775–1784. doi:10.1128/IAI.00128-16

    Google Scholar 

  7. Hendrixson DR, Akerley BJ, DiRita VJ (2001) Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 40(1):214–224

    Article  CAS  PubMed  Google Scholar 

  8. Kehl-Fie TE, St Geme JW 3rd (2007) Identification and characterization of an RTX toxin in the emerging pathogen Kingella kingae. J Bacteriol 189(2):430–436. doi:10.1128/JB.01319-06

    Article  CAS  PubMed  Google Scholar 

  9. Kehl-Fie TE, Miller SE, St Geme JW 3rd (2008) Kingella kingae expresses type IV pili that mediate adherence to respiratory epithelial and synovial cells. J Bacteriol 190(21):7157–7163. doi:10.1128/JB.00884-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kehl-Fie TE, Porsch EA, Miller SE, St Geme JW 3rd (2009) Expression of Kingella kingae type IV pili is regulated by sigma54, PilS, and PilR. J Bacteriol 191(15):4976–4986. doi:10.1128/JB.00123-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kehl-Fie TE, Porsch EA, Yagupsky P, Grass EA, Obert C, Benjamin DK Jr, St Geme JW 3rd (2010) Examination of type IV pilus expression and pilus-associated phenotypes in Kingella kingae clinical isolates. Infect Immun 78(4):1692–1699. doi:10.1128/IAI.00908-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Porsch EA, Johnson MD, Broadnax AD, Garrett CK, Redinbo MR, St Geme JW 3rd (2013) Calcium binding properties of the Kingella kingae PilC1 and PilC2 proteins have differential effects on type IV pilus-mediated adherence and twitching motility. J Bacteriol 195(4):886–895. doi:10.1128/JB.02186-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hood BL, Hirschberg R (1995) Purification and characterization of Eikenella corrodens type IV pilin. Infect Immun 63(9):3693–3696

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Alm RA, Mattick JS (1995) Identification of a gene, pilV, required for type 4 fimbrial biogenesis in Pseudomonas aeruginosa, whose product possesses a pre-pilin-like leader sequence. Mol Microbiol 16(3):485–496

    Article  CAS  PubMed  Google Scholar 

  15. St Geme JW 3rd, Kumar VV, Cutter D, Barenkamp SJ (1998) Prevalence and distribution of the hmw and hia genes and the HMW and Hia adhesins among genetically diverse strains of nontypeable Haemophilus influenzae. Infect Immun 66(1):364–368

    Google Scholar 

  16. Sheets AJ, Grass SA, Miller SE, St Geme JW 3rd (2008) Identification of a novel trimeric autotransporter adhesin in the cryptic genospecies of Haemophilus. J Bacteriol 190(12):4313–4320. doi:10.1128/JB.01963-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maldonado R, Wei R, Kachlany SC, Kazi M, Balashova NV (2011) Cytotoxic effects of Kingella kingae outer membrane vesicles on human cells. Microb Pathog 51(1–2):22–30. doi:10.1016/j.micpath.2011.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Starr KF, Porsch EA, Heiss C, Black I, Azadi P, St Geme JW 3rd (2013) Characterization of the Kingella kingae polysaccharide capsule and exopolysaccharide. PLoS ONE 8(9):e75409. doi:10.1371/journal.pone.0075409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bendaoud M, Vinogradov E, Balashova NV, Kadouri DE, Kachlany SC, Kaplan JB (2011) Broad-spectrum biofilm inhibition by Kingella kingae exopolysaccharide. J Bacteriol 193(15):3879–3886. doi:10.1128/JB.00311-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang DW, Nudell YA, Lau J, Zakharian E, Balashova NV (2014) RTX toxin plays a key role in Kingella kingae virulence in an infant rat model. Infect Immun 82(6):2318–2328. doi:10.1128/IAI.01636-14

    Article  PubMed  PubMed Central  Google Scholar 

  21. Basmaci R, Yagupsky P, Ilharreborde B, Guyot K, Porat N, Chomton M, Thiberge JM, Mazda K, Bingen E, Bonacorsi S, Bidet P (2012) Multilocus sequence typing and rtxA toxin gene sequencing analysis of Kingella kingae isolates demonstrates genetic diversity and international clones. PLoS ONE 7(5):e38078. doi:10.1371/journal.pone.0038078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hamilton HL, Schwartz KJ, Dillard JP (2001) Insertion-duplication mutagenesis of Neisseria: use in characterization of DNA transfer genes in the gonococcal genetic island. J Bacteriol 183(16):4718–4726. doi:10.1128/JB.183.16.4718-4726.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seifert HS (1997) Insertionally inactivated and inducible recA alleles for use in Neisseria. Gene 188(2):215–220

    Article  CAS  PubMed  Google Scholar 

  24. Chang AC, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134(3):1141–1156

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Porsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Muñoz, V.L., Starr, K.F., Porsch, E.A. (2016). Experimental Methods for Studying Kingella kingae . In: St. Geme, III, J. (eds) Advances in Understanding Kingella kingae. SpringerBriefs in Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-43729-3_8

Download citation

Publish with us

Policies and ethics