Skip to main content

Allogeneic Stem Cell Transplantation

  • Chapter
  • First Online:
Immunotherapy for Pediatric Malignancies

Abstract

Allogeneic stem cell transplantation in malignant diseases has evolved as a treatment option for patients with otherwise incurable diseases. The principle of this treatment is a significant tumor reduction by pretransplant chemotherapy or irradiation and immunological consolidation by various effector cells of the adaptive as well as of the innate immune system. The role of Graft versus Host disease (GvHD) and the concomitant Graft versus Tumor (GvT) effects is discussed and therapeutic approaches exploiting alloreactive T cell responses and ways to separate GvHD from GvT are shown. Antitumor response mechanisms that are also induced by alloreactive Natural Killer (NK) cells and γδ + T-cells belonging to the innate immune system are described. The innate donor-derived immune system might significantly contribute to the anti-tumor effects of allogeneic transplantation and the selection of donors will extend beyond classical high resolution typing of HLA alleles and finding the best matched HLA identical donor. The Killer Inhibitory Immunoglobuline-like Receptor (KIR) system is almost as polymorphic but independent from the HLA system and allows the selection of the optimal donor for certain malignant diseases. Especially in haploidentical transplantion, the KIR system plays an important role and new donor selection strategies might also apply in the future for the treatment of refractory solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pieters R, et al. Successful therapy reduction and intensification for childhood acute lymphoblastic leukemia based on minimal residual disease monitoring: study ALL10 from the Dutch Childhood Oncology Group. J Clin Oncol. 2016;34(22):2591–601.

    Article  PubMed  Google Scholar 

  2. Horowitz M, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75(3):555–62.

    CAS  PubMed  Google Scholar 

  3. Pulsipher MA, Peters C, Pui C-H. High risk pediatric acute lymphoblastic leukemia: to transplant or not to transplant? Biol Blood Marrow Transplant. 2011;17(1 Suppl):S137–48.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boulad F, et al. Allogeneic bone marrow transplantation versus chemotherapy for the treatment of childhood acute lymphoblastic leukemia in second remission: a single-institution study. J Clin Oncol. 1999;17(1):197.

    Article  CAS  PubMed  Google Scholar 

  5. Tallen G, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol. 2010;28(14):2339–47.

    Article  CAS  PubMed  Google Scholar 

  6. von Stackelberg A, et al. Outcome of children and adolescents with relapsed acute lymphoblastic leukaemia and non-response to salvage protocol therapy: a retrospective analysis of the ALL-REZ BFM Study Group. Eur J Cancer. 2011;47(1):90–7.

    Article  Google Scholar 

  7. Schlegel P, et al. Pediatric posttransplant relapsed/refractory B-precursor acute lymphoblastic leukemia shows durable remission by therapy with the T-cell engaging bispecific antibody blinatumomab. Haematologica. 2014;99(7):1212–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Maude SL, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schrauder A, et al. Allogeneic hematopoietic SCT in children with ALL: current concepts of ongoing prospective SCT trials. Bone Marrow Transplant. 2008;41(Suppl 2):S71–4.

    Article  PubMed  Google Scholar 

  10. Bader P, et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol. 2009;27(3):377–84.

    Article  PubMed  Google Scholar 

  11. Bader P, et al. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia. 2002;16(9):1668–72.

    Article  CAS  PubMed  Google Scholar 

  12. Tomas F, et al. Autologous or allogeneic bone marrow transplantation for acute myeloblastic leukemia in second complete remission. Importance of duration of first complete remission in final outcome. Bone Marrow Transplant. 1996;17(6):979–84.

    CAS  PubMed  Google Scholar 

  13. Mateos MK, et al. Transplant-related mortality following allogeneic hematopoeitic stem cell transplantation for pediatric acute lymphoblastic leukemia: 25-year retrospective review. Pediatr Blood Cancer. 2013;60(9):1520–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Horan JT, et al. Reducing the risk for transplantation-related mortality after allogeneic hematopoietic cell transplantation: how much progress has been made? J Clin Oncol. 2011;29(7):805–13.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Creutzig U, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120(16):3187–205.

    Article  CAS  PubMed  Google Scholar 

  16. Kelly MJ, et al. Comparable survival for pediatric acute myeloid leukemia with poor-risk cytogenetics following chemotherapy, matched related donor, or unrelated donor transplantation. Pediatr Blood Cancer. 2014;61(2):269–75.

    Article  CAS  PubMed  Google Scholar 

  17. Woods WG, et al. A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission: a report from the Children’s Cancer Group. Blood. 2001;97(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  18. Godder K, et al. Autologous hematopoietic stem-cell transplantation for children with acute myeloid leukemia in first or second complete remission: a prognostic factor analysis. J Clin Oncol. 2004;22(18):3798–804.

    Article  PubMed  Google Scholar 

  19. Thol F, et al. How I treat refractory and early relapsed acute myeloid leukemia. Blood. 2015;126(3):319–27.

    Article  CAS  PubMed  Google Scholar 

  20. Kaspers GJL, et al. Improved outcome in pediatric relapsed acute myeloid leukemia: results of a randomized trial on liposomal daunorubicin by the International BFM Study Group. J Clin Oncol. 2013;31(5):599–607.

    Article  CAS  PubMed  Google Scholar 

  21. Bitan M, et al. Transplantation for children with acute myeloid leukemia: a comparison of outcomes with reduced intensity and myeloablative regimens. Blood. 2014;123(10):1615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sander A, et al. Consequent and intensified relapse therapy improved survival in pediatric AML: results of relapse treatment in 379 patients of three consecutive AML-BFM trials. Leukemia. 2010;24(8):1422–8.

    Article  CAS  PubMed  Google Scholar 

  23. Locatelli F, Niemeyer CM. How I treat juvenile myelomonocytic leukemia. Blood. 2015;125(7):1083–90.

    Article  CAS  PubMed  Google Scholar 

  24. Cwynarski K, et al. Stem cell transplantation for chronic myeloid leukemia in children. Blood. 2003;102(4):1224–31.

    Article  CAS  PubMed  Google Scholar 

  25. Suttorp M, Millot F. Treatment of pediatric chronic myeloid leukemia in the year 2010: use of tyrosine kinase inhibitors and stem-cell transplantation. Hematology Am Soc Hematol Educ Program. 2010;2010:368–76.

    PubMed  Google Scholar 

  26. Andolina JR, Neudorf SM, Corey SJ. How I treat childhood CML. Blood. 2012;119(8):1821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nowak J. Role of HLA in hematopoietic SCT. Bone Marrow Transplant. 2008;42(S2):S71–6.

    Article  CAS  PubMed  Google Scholar 

  28. Schultz ES, et al. A MAGE-A3 peptide presented by HLA-DP4 is recognized on tumor cells by CD4+ cytolytic T lymphocytes. Cancer Res. 2000;60(22):6272–5.

    CAS  PubMed  Google Scholar 

  29. Lee SJ, et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood. 2007;110(13):4576–83.

    Article  CAS  PubMed  Google Scholar 

  30. Passweg JR, et al. High-resolution HLA matching in unrelated donor transplantation in Switzerland: differential impact of class I and class II mismatches may reflect selection of nonimmunogenic or weakly immunogenic DRB1/DQB1 disparities. Bone Marrow Transplant. 2015;50(9):1201–5.

    Article  CAS  PubMed  Google Scholar 

  31. Gyurkocza B, Sandmaier BM. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood. 2014;124(3):344–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clift R, et al. Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens [see comments]. Blood. 1990;76(9):1867–71.

    CAS  PubMed  Google Scholar 

  33. Scheulen ME, et al. Clinical phase I dose escalation and pharmacokinetic study of high-dose chemotherapy with treosulfan and autologous peripheral blood stem cell transplantation in patients with advanced malignancies. Clin Cancer Res. 2000;6(11):4209–16.

    CAS  PubMed  Google Scholar 

  34. Wachowiak J, et al. Treosulfan-based preparative regimens for allo-HSCT in childhood hematological malignancies: a retrospective study on behalf of the EBMT pediatric diseases working party. Bone Marrow Transplant. 2011;46(12):1510–8.

    Article  CAS  PubMed  Google Scholar 

  35. Sullivan K, et al. Influence of acute and chronic graft-versus-host disease on relapse and survival after bone marrow transplantation from HLA-identical siblings as treatment of acute and chronic leukemia [published erratum appears in Blood 1989 Aug 15;74(3):1180]. Blood. 1989;73(6):1720–8.

    CAS  PubMed  Google Scholar 

  36. Weiden PL, et al. Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med. 1981;304(25):1529–33.

    Article  CAS  PubMed  Google Scholar 

  37. Gorin NC, et al. Retrospective evaluation of autologous bone marrow transplantation vs. allogeneic bone marrow transplantation from an HLA identical related donor in acute myelocytic leukemia. A study of the European Cooperative Group for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. 1996;18(1):111–7.

    CAS  PubMed  Google Scholar 

  38. Fefer A, et al. Graft versus leukemia effect in man: the relapse rate of acute leukemia is lower after allogeneic than after syngeneic marrow transplantation. Prog Clin Biol Res. 1987;244:401–8.

    CAS  PubMed  Google Scholar 

  39. Kolb H-J. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood. 2008;112(12):4371–83.

    Article  CAS  PubMed  Google Scholar 

  40. Lang P, et al. A comparison between three graft manipulation methods for haploidentical stem cell transplantation in pediatric patients: preliminary results of a pilot study. Klin Padiatr. 2005;217(6):334–8.

    Article  CAS  PubMed  Google Scholar 

  41. Pérez-Simón JA, et al. Nonmyeloablative transplantation with or without alemtuzumab: comparison between 2 prospective studies in patients with lymphoproliferative disorders. Blood. 2002;100(9):3121–7.

    Article  PubMed  CAS  Google Scholar 

  42. Kumar A, et al. Antithymocyte globulin for acute-graft-versus-host-disease prophylaxis in patients undergoing allogeneic hematopoietic cell transplantation: a systematic review. Leukemia. 2012;26(4):582–8.

    Article  CAS  PubMed  Google Scholar 

  43. Tang X, et al. Increasing chimerism after allogeneic stem cell transplantation is associated with longer survival time. Biol Blood Marrow Transplant. 2014;20(8):1139–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Quantitative analysis of chimerism after allogeneic stem cell transplantation using multiplex PCR amplification of short tandem repeat markers and fluorescence detection. Leukemia. 2001;15(2):303–6.

    Google Scholar 

  45. Barrios M, et al. Chimerism status is a useful predictor of relapse after allogeneic stem cell transplantation for acute leukemia. Haematologica. 2003;88(7):801–10.

    PubMed  Google Scholar 

  46. Nikiforow S, Alyea EP. Maximizing GVL in allogeneic transplantation: role of donor lymphocyte infusions. Hematology Am Soc Hematol Educ Program. 2014;2014(1):570–5.

    PubMed  Google Scholar 

  47. Bleakley M, Riddell SR. Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer. 2004;4(5):371–80.

    Article  CAS  PubMed  Google Scholar 

  48. Blazar BR, Murphy WJ, Abedi M. Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol. 2012;12(6):443–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kanda J. Effect of HLA mismatch on acute graft-versus-host disease. Int J Hematol. 2013;98(3):300–8.

    Article  CAS  PubMed  Google Scholar 

  50. Dickinson AM. SNPs and GVHD prediction: where to next? Blood. 2012;119(22):5066–8.

    Article  CAS  PubMed  Google Scholar 

  51. Kim D, et al. Risk stratification of organ-specific GVHD can be improved by single-nucleotide polymorphism-based risk models. Bone Marrow Transplant. 2014;49(5):649–56.

    Article  CAS  PubMed  Google Scholar 

  52. Ringdén O, et al. Is there a graft-versus-leukaemia effect in the absence of graft-versus-host disease in patients undergoing bone marrow transplantation for acute leukaemia? Br J Haematol. 2000;111(4):1130–7.

    Article  PubMed  Google Scholar 

  53. Jernberg Gustafsson A, et al. Graft-versus-leukaemia effect in children: chronic GVHD has a significant impact on relapse and survival. Bone Marrow Transplant. 2003;31(3):175–81.

    Article  Google Scholar 

  54. Kolb H, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for blood and marrow transplantation working party chronic leukemia [see comments]. Blood. 1995;86(5):2041–50.

    CAS  PubMed  Google Scholar 

  55. Rujkijyanont P, et al. Risk-adapted donor lymphocyte infusion based on chimerism and donor source in pediatric leukemia. Blood Cancer J. 2013;3:e137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gaynon PS, et al. Bone marrow transplantation versus prolonged intensive chemotherapy for children with acute lymphoblastic leukemia and an initial bone marrow relapse within 12 months of the completion of primary therapy: Children’s Oncology Group Study CCG-1941. J Clin Oncol. 2006;24(19):3150–6.

    Article  PubMed  Google Scholar 

  57. Rocha V, et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood. 2001;97(10):2962–71.

    Article  CAS  PubMed  Google Scholar 

  58. Oevermann L, et al. Immune reconstitution and strategies for rebuilding the immune system after haploidentical stem cell transplantation. Ann N Y Acad Sci. 2012;1266:161–70.

    Article  CAS  PubMed  Google Scholar 

  59. Oevermann L, Handgretinger R. New strategies for haploidentical transplantation. Pediatr Res. 2012;71(4 Pt 2):418–26.

    Article  CAS  PubMed  Google Scholar 

  60. Cornelissen JJ, et al. Unrelated marrow transplantation for adult patients with poor-risk acute lymphoblastic leukemia: strong graft-versus-leukemia effect and risk factors determining outcome. Blood. 2001;97(6):1572–7.

    Article  CAS  PubMed  Google Scholar 

  61. Ishaqi MK, et al. Early lymphocyte recovery post-allogeneic hematopoietic stem cell transplantation is associated with significant graft-versus-leukemia effect without increase in graft-versus-host disease in pediatric acute lymphoblastic leukemia. Bone Marrow Transplant. 2008;41(3):245–52.

    Article  CAS  PubMed  Google Scholar 

  62. Peters C, et al. Stem-cell transplantation in children with acute lymphoblastic leukemia: a prospective international multicenter trial comparing sibling donors with matched unrelated donors-the ALL-SCT-BFM-2003 trial. J Clin Oncol. 2015;33(11):1265–74.

    Article  CAS  PubMed  Google Scholar 

  63. Weisdorf D. Which donor or graft source should you choose for the strongest GVL? Is there really any difference. Best Pract Res Clin Haematol. 2013;26(3):293–6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Velardi A. Haplo-BMT: which approach? Blood. 2013;121(5):719–20.

    Article  CAS  PubMed  Google Scholar 

  65. Raiola AM, et al. Unmanipulated haploidentical transplants compared with other alternative donors and matched sibling grafts. Biol Blood Marrow Transplant. 2014;20(10):1573–9.

    Article  PubMed  Google Scholar 

  66. van den Ancker W, et al. Priming of PRAME- and WT1-specific CD8(+) T cells in healthy donors but not in AML patients in complete remission: implications for immunotherapy. Oncoimmunology. 2013;2(4):e23971.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Saglio F, Hanley PJ, Bollard CM. The time is now: moving toward virus-specific T cells after allogeneic hematopoietic stem cell transplantation as the standard of care. Cytotherapy. 2014;16(2):149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leen A, et al. Multi-virus-specific T-cell therapy for patients after hematopoietic stem cell and cord blood transplantation. Blood. 2013;122(21):140.

    Google Scholar 

  69. Feuchtinger T, et al. Clinical grade generation of hexon-specific T cells for adoptive T-cell transfer as a treatment of adenovirus infection after allogeneic stem cell transplantation. J Immunother. 2008;31(2):199–206.

    Article  PubMed  Google Scholar 

  70. Icheva V, et al. Adoptive transfer of epstein-barr virus (EBV) nuclear antigen 1–specific T cells as treatment for EBV reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation. J Clin Oncol. 2013;31(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  71. Fontaine P, et al. Adoptive transfer of minor histocompatibility antigen-specific T lymphocytes eradicates leukemia cells without causing graft-versus-host disease. Nat Med. 2001;7(7):789–94.

    Article  CAS  PubMed  Google Scholar 

  72. Akatsuka Y, et al. Disparity for a newly identified minor histocompatibility antigen, HA-8, correlates with acute graft-versus-host disease after haematopoietic stem cell transplantation from an HLA-identical sibling. Br J Haematol. 2003;123(4):671–5.

    Article  CAS  PubMed  Google Scholar 

  73. Wang W, et al. Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science. 1995;269(5230):1588–90.

    Article  CAS  PubMed  Google Scholar 

  74. Murata M, Warren EH, Riddell SR. A human minor histocompatibility antigen resulting from differential expression due to a gene deletion. J Exp Med. 2003;197(10):1279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bleakley M, Riddell SR. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol Cell Biol. 2011;89(3):396–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Anguille S, Van Tendeloo VF, Berneman ZN. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia. 2012;26(10):2186–96.

    Article  CAS  PubMed  Google Scholar 

  77. Stuehler C, et al. Selective depletion of alloreactive T cells by targeted therapy of heat shock protein 90: a novel strategy for control of graft-versus-host disease. Blood. 2009;114(13):2829–36.

    Article  CAS  PubMed  Google Scholar 

  78. Hartwig UF, et al. Depletion of alloreactive T cells via CD69: implications on antiviral, antileukemic and immunoregulatory T lymphocytes. Bone Marrow Transplant. 2005;37(3):297–305.

    Article  CAS  Google Scholar 

  79. Amrolia PJ, et al. Selective depletion of donor alloreactive T cells without loss of antiviral or antileukemic responses. Blood. 2003;102(6):2292–9.

    Article  CAS  PubMed  Google Scholar 

  80. Kruse PH, et al. Natural cytotoxicity receptors and their ligands. Immunol Cell Biol. 2014;92(3):221–9.

    Article  CAS  PubMed  Google Scholar 

  81. Vivier E, et al. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10.

    Article  CAS  PubMed  Google Scholar 

  82. Takada K, Jameson SC. Naive T cell homeostasis: from awareness of space to a sense of place. Nat Rev Immunol. 2009;9(12):823–32.

    Article  CAS  PubMed  Google Scholar 

  83. Airoldi I, et al. γδ T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-αβ+/CD19+ lymphocytes. Blood. 2015;125(15):2349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vantourout P, Hayday A. Six-of-the-best: unique contributions of [gamma][delta] T cells to immunology. Nat Rev Immunol. 2013;13(2):88–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Paust S, von Andrian UH. Natural killer cell memory. Nat Immunol. 2011;12(6):500–8.

    Article  CAS  PubMed  Google Scholar 

  86. Felix NJ, Allen PM. Specificity of T-cell alloreactivity. Nat Rev Immunol. 2007;7(12):942–53.

    Article  CAS  PubMed  Google Scholar 

  87. Zheng J, et al. [ggr][dgr]-T cells: an unpolished sword in human anti-infection immunity. Cell Mol Immunol. 2013;10(1):50–7.

    Article  CAS  PubMed  Google Scholar 

  88. Carding SR, Egan PJ. Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol. 2002;2(5):336–45.

    Article  CAS  PubMed  Google Scholar 

  89. Maniar A, et al. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood. 2010;116(10):1726–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lang P, et al. Natural killer cell activity influences outcome after T cell depleted stem cell transplantation from matched unrelated and haploidentical donors. Best Pract Res Clin Haematol. 2011;24(3):403–11.

    Article  CAS  PubMed  Google Scholar 

  91. Seidel UJE, et al. Reduction of minimal residual disease in pediatric B-lineage acute lymphoblastic leukemia by an Fc-optimized CD19 antibody. Mol Ther. 2016;24(9):1634–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seidel UJ, et al. gammadelta T cell-mediated antibody-dependent cellular cytotoxicity with CD19 antibodies assessed by an impedance-based label-free real-time cytotoxicity assay. Front Immunol. 2014;5:618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Vivier E, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Leung W. Use of NK cell activity in cure by transplant. Br J Haematol. 2011;155(1):14–29.

    Article  CAS  PubMed  Google Scholar 

  95. Colonna M, et al. A high-resolution view of NK-cell receptors: structure and function. Immunol Today. 2000;21(9):428–31.

    Article  CAS  PubMed  Google Scholar 

  96. Yokoyama WM, Plougastel BFM. Immune functions encoded by the natural killer gene complex. Nat Rev Immunol. 2003;3(4):304–16.

    Article  CAS  PubMed  Google Scholar 

  97. Raulet DH, Vance RE. Self-tolerance of natural killer cells. Nat Rev Immunol. 2006;6(7):520–31.

    Article  CAS  PubMed  Google Scholar 

  98. Kumar V, McNerney ME. A new self: MHC-class-I-independent Natural-killer-cell self-tolerance. Nat Rev Immunol. 2005;5(5):363–74.

    Article  CAS  PubMed  Google Scholar 

  99. Borrego F. The first molecular basis of the “missing self” hypothesis. J Immunol. 2006;177(9):5759–60.

    Article  CAS  PubMed  Google Scholar 

  100. Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003;3(10):781–90.

    Article  CAS  PubMed  Google Scholar 

  101. Jaeger BN, Vivier E. Natural killer cell tolerance: control by self or self-control? Cold Spring Harb Perspect Biol. 2012;4(3):a007229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Shifrin N, Raulet DH, Ardolino M. NK cell self tolerance, responsiveness and missing self recognition. Semin Immunol. 2014;26(2):138–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Torelli GF, et al. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells. Haematologica. 2014;99(7):1248–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Hilpert J, et al. Comprehensive analysis of NKG2D ligand expression and release in leukemia: implications for NKG2D-mediated NK cell responses. J Immunol. 2012;189(3):1360–71.

    Article  CAS  PubMed  Google Scholar 

  105. Feuchtinger T, et al. Cytolytic activity of NK cell clones against acute childhood precursor-B-cell leukaemia is influenced by HLA class I expression on blasts and the differential KIR phenotype of NK clones. Bone Marrow Transplant. 2009;43(11):875–81.

    Article  CAS  PubMed  Google Scholar 

  106. Pfeiffer M, et al. Intensity of HLA class I expression and KIR-mismatch determine NK-cell mediated lysis of leukaemic blasts from children with acute lymphatic leukaemia. Br J Haematol. 2007;138(1):97–100.

    Article  PubMed  Google Scholar 

  107. Schlegel P, et al. NKG2D signaling leads to NK cell mediated lysis of childhood AML. J Immunol Res. 2015;2015:10.

    Article  CAS  Google Scholar 

  108. Locatelli F, Bertaina A. Reconstitution of repertoire of natural killer cell receptors after transplantation: just a question of time[quest]. Bone Marrow Transplant. 2010;45(6):968–9.

    Article  CAS  PubMed  Google Scholar 

  109. Handgretinger R, et al. Megadose transplantation of purified peripheral blood CD34(+) progenitor cells from HLA-mismatched parental donors in children. Bone Marrow Transplant. 2001;27(8):777–83.

    Article  CAS  PubMed  Google Scholar 

  110. Seggewiss R, Einsele H. Immune reconstitution after allogeneic transplantation and expanding options for immunomodulation: an update. Blood. 2010;115(19):3861–8.

    Article  CAS  PubMed  Google Scholar 

  111. Lang P, et al. Improved immune recovery after transplantation of TCRalphabeta/CD19-depleted allografts from haploidentical donors in pediatric patients. Bone Marrow Transplant. 2015;50(Suppl 2):S6–10.

    Article  CAS  PubMed  Google Scholar 

  112. Uhrberg M. The KIR gene family: life in the fast lane of evolution. Eur J Immunol. 2005;35(1):10–5.

    Article  CAS  PubMed  Google Scholar 

  113. Cooley S, et al. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood. 2010;116(14):2411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ruggeri L, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097–100.

    Article  CAS  PubMed  Google Scholar 

  115. Oevermann L, et al. KIR B haplotype donors confer a reduced risk for relapse after haploidentical transplantation in children with ALL. Blood. 2014;124(17):2744–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Michaelis SU, et al. KIR haplotype B donors but not KIR-ligand mismatch result in a reduced incidence of relapse after haploidentical transplantation using reduced intensity conditioning and CD3/CD19-depleted grafts. Ann Hematol. 2014;93(9):1579–86.

    Article  PubMed  Google Scholar 

  117. Cooley S, et al. Donor killer cell Ig-like receptor B haplotypes, recipient HLA-C1, and HLA-C mismatch enhance the clinical benefit of unrelated transplantation for acute myelogenous leukemia. J Immunol. 2014;192(10):4592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lang P, et al. Transplantation of CD3/CD19 depleted allografts from haploidentical family donors in paediatric leukaemia. Br J Haematol. 2014;165(5):688–98.

    Article  CAS  PubMed  Google Scholar 

  119. Moretta A, et al. Activating and inhibitory killer immunoglobulin-like receptors (KIR) in haploidentical haemopoietic stem cell transplantation to cure high-risk leukaemias. Clin Exp Immunol. 2009;157(3):325–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pende D, et al. Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. Blood. 2009;113(13):3119–29.

    Article  CAS  PubMed  Google Scholar 

  121. Pfeiffer MM, et al. Reconstitution of natural killer cell receptors influences natural killer activity and relapse rate after haploidentical transplantation of T- and B-cell depleted grafts in children. Haematologica. 2010;95(8):1381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Leung W, et al. Determinants of antileukemia effects of allogeneic NK cells. J Immunol. 2004;172(1):644–50.

    Article  CAS  PubMed  Google Scholar 

  123. McQueen KL, et al. Donor-recipient combinations of group A and B KIR haplotypes and HLA class I ligand affect the outcome of HLA-matched, sibling donor hematopoietic cell transplantation. Hum Immunol. 2007;68(5):309–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Huntington ND, Vosshenrich CA, Di Santo JP. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol. 2007;7(9):703–14.

    Article  CAS  PubMed  Google Scholar 

  125. Tarek N, et al. Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment. J Clin Invest. 2012;122(9):3260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Handgretinger R. Donor selection for AML: do the KIR. Blood. 2010;116(14):2407–9.

    Article  CAS  PubMed  Google Scholar 

  127. Bari R, et al. Effect of donor KIR2DL1 allelic polymorphism on the outcome of pediatric allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2013;31(30):3782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. O’Reilly RJ. Allelic polymorphisms of inhibitory killer immunoglobulin-like receptor natural killer cell function can also influence the graft-versus-leukemia response. J Clin Oncol. 2013;31(30):3742–5.

    Article  PubMed  Google Scholar 

  129. Rubnitz JE, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010;28(6):955–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Weisdorf D, et al. T cell-depleted partial matched unrelated donor transplant for advanced myeloid malignancy: KIR ligand mismatch and outcome. Biol Blood Marrow Transplant. 2012;18(6):937–43.

    Article  PubMed  Google Scholar 

  131. Ringden O, et al. Is there a stronger graft-versus-leukemia effect using HLA-haploidentical donors compared with HLA-identical siblings[quest]. Leukemia. 2016;30(2):447–55.

    CAS  PubMed  Google Scholar 

  132. Verneris MR. NK Cell—KIR-TREGs: how to manipulate a graft for optimal GVL. ASH Education Book. 2013;2013:335–41.

    Google Scholar 

  133. Anasetti C, Hansen JA. Effect of HLA incompatibility in marrow transplantation from unrelated and HLA-mismatched related donors. Transfus Sci. 1994;15(3):221–30.

    Article  CAS  PubMed  Google Scholar 

  134. Lang P, Handgretinger R. Haploidentical SCT in children: an update and future perspectives. Bone Marrow Transplant. 2008;42(S2):S54–9.

    Article  PubMed  Google Scholar 

  135. Reisner Y, Martelli MF. Tolerance induction by ‘megadose’ transplants of CD34+ stem cells: a new option for leukemia patients without an HLA-matched donor. Curr Opin Immunol. 2000;12(5):536–41.

    Article  CAS  PubMed  Google Scholar 

  136. Aversa F, et al. Mismatched T cell-depleted hematopoietic stem cell transplantation for children with high-risk acute leukemia. Bone Marrow Transplant. 1998;22(Suppl 5):S29–32.

    PubMed  Google Scholar 

  137. Lang P, et al. Long-term outcome after haploidentical stem cell transplantation in children. Blood Cells Mol Dis. 2004;33(3):281–7.

    Article  PubMed  Google Scholar 

  138. Marks DI, et al. Haploidentical stem cell transplantation for children with acute leukaemia. Br J Haematol. 2006;134(2):196–201.

    Article  PubMed  Google Scholar 

  139. Henslee-Downey PJ, et al. Use of partially mismatched related donors extends access to allogeneic marrow transplant. Blood. 1997;89(10):3864–72.

    CAS  PubMed  Google Scholar 

  140. Lang P, et al. Transplantation of a combination of CD133+ and CD34+ selected progenitor cells from alternative donors. Br J Haematol. 2004;124(1):72–9.

    Article  PubMed  Google Scholar 

  141. Peters C, et al. Transplantation of highly purified peripheral blood CD34+ cells from HLA-mismatched parental donors in 14 children: evaluation of early monitoring of engraftment. Leukemia. 1999;13(12):2070–8.

    Article  CAS  PubMed  Google Scholar 

  142. Chen X, et al. Rapid immune reconstitution after a reduced-intensity conditioning regimen and a CD3-depleted haploidentical stem cell graft for paediatric refractory haematological malignancies. Br J Haematol. 2006;135(4):524–32.

    Article  PubMed  Google Scholar 

  143. Foley B, et al. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT). Immunol Rev. 2014;258(1):45–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Velardi A, Ruggeri L, Mancusi A. Killer-cell immunoglobulin-like receptors reactivity and outcome of stem cell transplant. Curr Opin Hematol. 2012;19(4):319–23.

    Article  CAS  PubMed  Google Scholar 

  145. Hale GA, et al. Haploidentical stem cell transplantation with CD3 depleted mobilized peripheral blood stem cell grafts for children with hematologic malignancies. Blood. 2005;106(11):2910.

    Google Scholar 

  146. Hale GA, et al. Mismatched family member donor transplantation for patients with refractory hematologic malignancies: long-term followup of a prospective clinical trial. Blood. 2006;108(11):3137.

    Google Scholar 

  147. Handgretinger R, et al. Feasibility and outcome of reduced-intensity conditioning in haploidentical transplantation. Ann N Y Acad Sci. 2007;1106(1):279–89.

    Article  CAS  PubMed  Google Scholar 

  148. Federmann B, et al. Immune reconstitution after haploidentical hematopoietic cell transplantation: impact of reduced intensity conditioning and CD3/CD19 depleted grafts. Leukemia. 2011;25(1):121–9.

    Article  CAS  PubMed  Google Scholar 

  149. Bethge WA, et al. Haploidentical allogeneic hematopoietic cell transplantation in adults with reduced-intensity conditioning and CD3/CD19 depletion: fast engraftment and low toxicity. Exp Hematol. 2006;34(12):1746–52.

    Article  CAS  PubMed  Google Scholar 

  150. Dufort G, et al. Feasibility and outcome of haploidentical SCT in pediatric high-risk hematologic malignancies and Fanconi anemia in Uruguay. Bone Marrow Transplant. 2012;47(5):663–8.

    Article  CAS  PubMed  Google Scholar 

  151. Palma J, et al. Haploidentical stem cell transplantation for children with high-risk leukemia. Pediatr Blood Cancer. 2012;59(5):895–901.

    Article  PubMed  Google Scholar 

  152. Drobyski WR, Majewski D, Hanson G. Graft-facilitating doses of ex vivo activated gammadelta T cells do not cause lethal murine graft-vs.-host disease. Biol Blood Marrow Transplant. 1999;5(4):222–30.

    Article  CAS  PubMed  Google Scholar 

  153. Halary F, et al. Shared reactivity of Vδ2(neg) γδ T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J Exp Med. 2005;201(10):1567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Handgretinger R, et al. Transplantation of TcRαβ/CD19 depleted stem cells from haploidentical donors: robust engraftment and rapid immune reconstitution in children with high risk leukemia. Blood. 2011;118(21):1005.

    Google Scholar 

  155. Dolstra H, et al. TCR gamma delta cytotoxic T lymphocytes expressing the killer cell-inhibitory receptor p58.2 (CD158b) selectively lyse acute myeloid leukemia cells. Bone Marrow Transplant. 2001;27(10):1087–93.

    Article  CAS  PubMed  Google Scholar 

  156. Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Minculescu L, Sengeløv H. The role of gamma delta T cells in haematopoietic stem cell transplantation. Scand J Immunol. 2015;81(6):459–68.

    Article  CAS  PubMed  Google Scholar 

  158. Godder KT, et al. Long term disease-free survival in acute leukemia patients recovering with increased [gamma][delta] T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant. 2007;39(12):751–7.

    Article  CAS  PubMed  Google Scholar 

  159. Handgretinger R. Negative depletion of CD3(+) and TcRalphabeta(+) T cells. Curr Opin Hematol. 2012;19(6):434–9.

    Article  CAS  PubMed  Google Scholar 

  160. Maschan M, et al. TCR-alpha/beta and CD19 depletion and treosulfan-based conditioning regimen in unrelated and haploidentical transplantation in children with acute myeloid leukemia. Bone Marrow Transplant. 2016;51(5):668–74.

    Article  CAS  PubMed  Google Scholar 

  161. Leung W, et al. High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood. 2011;118(2):223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Eckert C, et al. Use of allogeneic hematopoietic stem-cell transplantation based on minimal residual disease response improves outcomes for children with relapsed acute lymphoblastic leukemia in the intermediate-risk group. J Clin Oncol. 2013;31(21):2736–42.

    Article  PubMed  Google Scholar 

  163. Teschner D, et al. Depletion of naive T cells using clinical grade magnetic CD45RA beads: a new approach for GVHD prophylaxis. Bone Marrow Transplant. 2014;49(1):138–44.

    Article  CAS  PubMed  Google Scholar 

  164. Mackay CR. Dual personality of memory T cells. Nature. 1999;401(6754):659–60.

    Article  CAS  PubMed  Google Scholar 

  165. Chang JT, Wherry EJ, Goldrath AW. Molecular regulation of effector and memory T cell differentiation. Nat Immunol. 2014;15(12):1104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wils E-J, et al. Insufficient recovery of thymopoiesis predicts for opportunistic infections in allogeneic hematopoietic stem cell transplant recipients. Haematologica. 2011;96(12):1846–54.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Triplett BM, et al. Rapid memory T-cell reconstitution recapitulating CD45RA-depleted haploidentical transplant graft content in patients with hematologic malignancies. Bone Marrow Transplant. 2015;50(7):968–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Shook DR, et al. Haploidentical stem cell transplantation augmented by CD45RA negative lymphocytes provides rapid engraftment and excellent tolerability. Pediatr Blood Cancer. 2015;62(4):666–73.

    Article  CAS  PubMed  Google Scholar 

  169. Touzot F, et al. CD45RA depletion in HLA-mismatched allogeneic hematopoietic stem cell transplantation for primary combined immunodeficiency: a preliminary study. J Allergy Clin Immunol. 2015;135(5):1303.e3–9.e3.

    Article  CAS  Google Scholar 

  170. Luznik L, et al. Posttransplantation cyclophosphamide facilitates engraftment of major histocompatibility complex-identical allogeneic marrow in mice conditioned with low-dose total body irradiation. Biol Blood Marrow Transplant. 2002;8(3):131–8.

    Article  CAS  PubMed  Google Scholar 

  171. Luznik L, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14(6):641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jaiswal SR, et al. Haploidentical peripheral blood stem cell transplantation with post-transplantation cyclophosphamide in children with advanced acute leukemia with fludarabine-, busulfan-, and melphalan-based conditioning. Biol Blood Marrow Transplant. 2016;22(3):499–504.

    Article  CAS  PubMed  Google Scholar 

  173. Bashey A, et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31(10):1310–6.

    Article  CAS  PubMed  Google Scholar 

  174. Ciurea SO, et al. Haploidentical transplant with posttransplant cyclophosphamide vs. matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126(8):1033–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cieri N, et al. Post-transplantation cyclophosphamide and sirolimus after haploidentical hematopoietic stem cell transplantation using a treosulfan-based myeloablative conditioning and peripheral blood stem cells. Biol Blood Marrow Transplant. 2015;21(8):1506–14.

    Article  CAS  PubMed  Google Scholar 

  176. Bacigalupo A, et al. Unmanipulated haploidentical bone marrow transplantation and post-transplant cyclophosphamide for hematologic malignanices following a myeloablative conditioning: an update. Bone Marrow Transplant. 2015;50(S2):S37–9.

    Article  CAS  PubMed  Google Scholar 

  177. Fuchs EJ. HLA-haploidentical blood or marrow transplantation with high-dose, post-transplantation cyclophosphamide. Bone Marrow Transplant. 2015;50(S2):S31–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kasamon YL, et al. Nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose posttransplantation cyclophosphamide: effect of HLA disparity on outcome. Biol Blood Marrow Transplant. 2010;16(4):482–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Schrappe M, et al. Key treatment questions in childhood acute lymphoblastic leukemia: results in 5 consecutive trials performed by the ALL-BFM study group from 1981 to 2000. Klin Padiatr. 2013;225(Suppl 1):S62–72.

    PubMed  Google Scholar 

  180. Schrauder A, et al. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J Clin Oncol. 2006;24(36):5742–9.

    Article  PubMed  Google Scholar 

  181. Peters C, et al. Allogeneic haematopoietic stem cell transplantation in children with acute lymphoblastic leukaemia: the BFM/IBFM/EBMT concepts. Bone Marrow Transplant. 2005;35(Suppl 1):S9–11.

    Article  PubMed  Google Scholar 

  182. Barrett D, Fish JD, Grupp SA. Autologous and allogeneic cellular therapies for high-risk pediatric solid tumors. Pediatr Clin N Am. 2010;57(1):47–66.

    Article  Google Scholar 

  183. Perez-Martinez A, et al. Natural killer cells can exert a graft-vs-tumor effect in haploidentical stem cell transplantation for pediatric solid tumors. Exp Hematol. 2012;40(11):882.e1–91.e1.

    Article  CAS  Google Scholar 

  184. Koscielniak E, et al. Graft-versus-Ewing sarcoma effect and long-term remission induced by haploidentical stem-cell transplantation in a patient with relapse of metastatic disease. J Clin Oncol. 2005;23(1):242–4.

    Article  PubMed  Google Scholar 

  185. Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 2007;7(2):139–47.

    Article  CAS  PubMed  Google Scholar 

  186. Baldan V, et al. Efficient and reproducible generation of tumour-infiltrating lymphocytes for renal cell carcinoma. Br J Cancer. 2015;112(9):1510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Singh N, et al. Nature of tumor control by permanently and transiently modified GD2 chimeric antigen receptor T cells in xenograft models of neuroblastoma. Cancer Immunol Res. 2014;2(11):1059–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Topalian SL, et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Rammensee H-G. Some considerations on the use of peptides and mRNA for therapeutic vaccination against cancer. Immunol Cell Biol. 2006;84(3):290–4.

    Article  CAS  PubMed  Google Scholar 

  190. Walter S, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18:1254–61.

    Article  CAS  PubMed  Google Scholar 

  191. Navid F, et al. Phase I trial of a novel anti-GD2 monoclonal antibody, Hu14.18K322A, designed to decrease toxicity in children with refractory or recurrent neuroblastoma. J Clin Oncol. 2014;32(14):1445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Pfeiffer MM, et al. IL-15-stimulated CD3/CD19-depleted stem-cell boosts in relapsed pediatric patients after haploidentical SCT. Leukemia. 2012;26(11):2435–9.

    Article  CAS  PubMed  Google Scholar 

  193. Lang P, et al. Haploidentical stem cell transplantation in patients with pediatric solid tumors: preliminary results of a pilot study and analysis of graft versus tumor effects. Klin Padiatr. 2006;218(6):321–6.

    Article  CAS  PubMed  Google Scholar 

  194. Yang JC, Childs R. Immunotherapy for renal cell cancer. J Clin Oncol. 2006;24(35):5576–83.

    Article  CAS  PubMed  Google Scholar 

  195. Ringdén O, et al. The allogeneic graft-versus-cancer effect. Br J Haematol. 2009;147(5):614–33.

    Article  PubMed  Google Scholar 

  196. Childs RW, et al. Successful treatment of metastatic renal cell carcinoma with a nonmyeloablative allogeneic peripheral-blood progenitor-cell transplant: evidence for a graft-versus-tumor effect. J Clin Oncol. 1999;17(7):2044.

    Article  CAS  PubMed  Google Scholar 

  197. Barkholt L, et al. Allogeneic haematopoietic stem cell transplantation for metastatic renal carcinoma in Europe. Ann Oncol. 2006;17(7):1134–40.

    Article  CAS  PubMed  Google Scholar 

  198. Childs R, Srinivasan R. Advances in allogeneic stem cell transplantation: directing graft-versus-leukemia at solid tumors. Cancer J. 2002;8(1):2–11.

    Article  PubMed  Google Scholar 

  199. Rosenberg SA, et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Carli M, et al. High-dose melphalan with autologous stem-cell rescue in metastatic rhabdomyosarcoma. J Clin Oncol. 1999;17(9):2796–803.

    Article  CAS  PubMed  Google Scholar 

  201. Koscielniak E, et al. Do patients with metastatic and recurrent rhabdomyosarcoma benefit from high-dose therapy with hematopoietic rescue? Report of the German/Austrian Pediatric Bone Marrow Transplantation Group. Bone Marrow Transplant. 1997;19(3):227–31.

    Article  CAS  PubMed  Google Scholar 

  202. Schlegel P, et al. Favorable NK cell activity after haploidentical hematopoietic stem cell transplantation in stage IV relapsed Ewing’s sarcoma patients. Bone Marrow Transplant. 2015;50(Suppl 2):S72–6.

    Article  CAS  PubMed  Google Scholar 

  203. Simon T, et al. Long term outcome of high-risk neuroblastoma patients after immunotherapy with antibody ch14.18 or oral metronomic chemotherapy. BMC Cancer. 2011;11:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Handgretinger R, et al. A phase I study of human/mouse chimeric antiganglioside GD2 antibody ch14.18 in patients with neuroblastoma. Eur J Cancer. 1995;31A(2):261–7.

    Article  CAS  PubMed  Google Scholar 

  205. Ozkaynak MF, et al. Phase I study of chimeric human/murine anti-ganglioside G(D2) monoclonal antibody (ch14.18) with granulocyte-macrophage colony-stimulating factor in children with neuroblastoma immediately after hematopoietic stem-cell transplantation: a Children’s Cancer Group Study. J Clin Oncol. 2000;18(24):4077–85.

    Article  CAS  PubMed  Google Scholar 

  206. August CS, et al. Treatment of advanced neuroblastoma with supralethal chemotherapy, radiation, and allogeneic or autologous marrow reconstitution. J Clin Oncol. 1984;2(6):609–16.

    Article  CAS  PubMed  Google Scholar 

  207. Graham-Pole J, et al. High-dose melphalan therapy for the treatment of children with refractory neuroblastoma and Ewing’s sarcoma. Am J Pediatr Hematol Oncol. 1984;6(1):17–26.

    CAS  PubMed  Google Scholar 

  208. Matthay KK, et al. Allogeneic versus autologous purged bone marrow transplantation for neuroblastoma: a report from the Childrens Cancer Group. J Clin Oncol. 1994;12(11):2382–9.

    Article  CAS  PubMed  Google Scholar 

  209. Rousseau RF, et al. Local and systemic effects of an allogeneic tumor cell vaccine combining transgenic human lymphotactin with interleukin-2 in patients with advanced or refractory neuroblastoma. Blood. 2003;101(5):1718–26.

    Article  CAS  PubMed  Google Scholar 

  210. Marabelle A, et al. Graft-versus-tumour effect in refractory metastatic neuroblastoma. Bone Marrow Transplant. 2007;39(12):809–10.

    Article  CAS  PubMed  Google Scholar 

  211. Del Toro G, et al. Reduced intensity (RI) allogeneic cord blood hematopoietic cell transplantation (Allo CBHCT) in pediatric patients with malignant and non-malignant diseases. Blood. 2005;106(11):5463.

    Google Scholar 

  212. Lang P, et al. Haploidentical stem cell transplantation and subsequent immunotherapy with antiGD2 antibody for patients with relapsed metastatic neuroblastoma. J Clin Oncol. 2015;33(suppl; abstr 10056.)

    Google Scholar 

  213. Kanold J, et al. Allogeneic or haploidentical HSCT for refractory or relapsed solid tumors in children: toward a neuroblastoma model. Bone Marrow Transplant. 2008;42(S2):S25–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert Handgretinger M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schlegel, P., Seitz, C., Lang, P., Handgretinger, R. (2018). Allogeneic Stem Cell Transplantation. In: Gray, J., Marabelle, A. (eds) Immunotherapy for Pediatric Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-319-43486-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43486-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43484-1

  • Online ISBN: 978-3-319-43486-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics