Skip to main content

Search for New Phenomena in Events with Large Jet Multiplicities

  • Chapter
  • First Online:
High Jet Multiplicity Physics at the LHC

Part of the book series: Springer Theses ((Springer Theses))

  • 346 Accesses

Abstract

This chapter describes a search for new particles hidden in 8 TeV collisions producing many jets. After a first overview of the analysis, the next sections describe the supersymmetric signals, the data, and the triggers used, as well as the main reconstructed objects, kinematic variables and cleaning cuts used in the analysis. After that, the main backgrounds to the search are described, and the methods used to estimate them discussed, including the determination of their uncertainties. Finally, the last section includes an overview of the statistical procedure used to interpret the result, and the corresponding model-independent and model-dependent exclusion limits on new physics.

‘Do you know, I always thought unicorns were fabulous monsters, too? I never saw one alive before!’

‘Well, now that we have seen each other,’ said the unicorn, ‘if you’ll believe in me, I’ll believe in you.’

Lewis Carroll, Through the Looking-Glass

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More details on variable definitions will be given in Sect. 3.2.4.

  2. 2.

    The small inefficiency seen in Fig. 3.4 for events with the sixth jet \(p_{\mathrm {T}}\) between 50 and 55 GeV could only affect the signal regions indirectly via the multi-jet background prediction. A dedicated systematic uncertainty is derived, and found to be negligible. The uncertainty will be discussed in Sect. 3.5.4.

  3. 3.

    Closure here refers to the self-consistency of the calibration procedure, i.e. the recovery of the truth-level jet energy scale when the calibration procedure is applied on the simulated events used to derive it.

  4. 4.

    Other than its own.

  5. 5.

    The signal fraction in these regions could have been significant in the first iterations of the analysis. As SUSY phase space is getting excluded, the cross sections of the available phase space get smaller. This is why the signal fraction is now expected to be very small in these regions, and they are considered simply as confirmation regions.

  6. 6.

    The convention used by ATLAS and CMS is to take the central value defined by the positive and negative cross section uncertainties as the best estimate of the cross section. This approach also results in a symmetric uncertainty.

  7. 7.

    Although the ‘vanilla’ approach would be to only use the data in the control regions for this calculation, for the fitting algorithm control and signal regions are by construction equivalent. The main difference between regions is the relative contribution from signal and background, which is what determines whether they can be used to constrain the background; this way, all the data available is used in order to obtain the best possible background description. From this perspective the use of the terms ‘control’ and ‘signal’ partially loses its meaning (inherited from older statistical approaches), although the nomenclature is still useful at the time of developing the analysis.

References

  1. Atlas Collaboration et al. (1999). ATLAS detector and physics performance technical design report. In CERN/LHCC (Vol. 15, p. 1999).

    Google Scholar 

  2. Svantesson, P., et al. (2012). E6SSM vs MSSM gluino phenomenology. EPJ web of conferences (Vol. 28, p. 12014). London: EDP Sciences.

    Google Scholar 

  3. Maxin, J. A., et al. (2011). The ultra-high jet multiplicity signal of stringy no-scale F-SU (5) at the \(\sqrt{s}=7\) TeV LHC. arXiv:1103.4160.

  4. Feldman, D., et al. (2011). A new (string motivated) approach to the little hierarchy problem. Physics Letters B, 704(1), 56–61.

    Article  ADS  Google Scholar 

  5. ATLAS Collaboration. (2011). Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using \(\sqrt{s}=7\) TeV pp collisions with the ATLAS detector. Journal of High Energy Physics, 2011(11), 1–38.

    Google Scholar 

  6. ATLAS Collaboration. (2011). Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \(\sqrt{s}=7\) TeV proton-proton collisions. Physics Letters B, 701, 186–203. doi:10.1016/j.physletb.2011.05.061. arXiv:1102.5290.

    Google Scholar 

  7. ATLAS Collaboration. (2012). Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 \(\rm fb^{-1}\) of \(\sqrt{s}=7\) TeV proton-proton collisions. Journal of High Energy Physics, 2012(7), 1–40.

    Google Scholar 

  8. ATLAS Collaboration. (2012). Search for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 5.8 fb\(^{-1}\) of \(\sqrt{s}=8\) TeV proton-proton collisions. Technical report ATLAS-COM-CONF-2012-142. Geneva: CERN.

    Google Scholar 

  9. ATLAS Collaboration. (2013). Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at \(\sqrt{s}=8\) TeV proton-proton collisions using the ATLAS experiment. Journal of High Energy Physics, 2013(10), 1–50.

    Google Scholar 

  10. ATLAS Collaboration. (2012). Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716(1), 1–29. doi:10.1016/j.physletb.2012.08.020. ISSN: 0370-2693.

    Google Scholar 

  11. ATLAS Collaboration. (2012). A particle consistent with the Higgs boson observed with the ATLAS detector at the large hadron collider. Science, 338(6114), 1576–1582. doi:10.1126/science.1232005.

  12. ATLAS Collaboration. (2013). Evidence for the spin-0 nature of the Higgs boson using ATLAS data. Physics Letters B, 726, 120–144. doi:10.1016/j.physletb.2013.08.026. ISSN: 0370-2693.

    Google Scholar 

  13. Allanach, B. C., & Gripaios, B. (2012). Hide and seek with natural supersymmetry at the LHC. JHEP, 1205, 062. doi:10.1007/JHEP05(2012)062. arXiv:1202.6616.

  14. Bahr, M., et al. (2008). Herwig++ physics and manual. The European Physical Journal C, 58, 639–707. doi:10.1140/epjc/s10052-008-0798-9. arXiv:0803.0883.

    Google Scholar 

  15. Alwall, J., et al. (2011). MadGraph 5: Going beyond. JHEP, 06, 128. doi:10.1007/JHEP06(2011)128. arXiv:1106.0522.

  16. Sjöstrand, T., Mrenna, S., & Skands, P. Z. (2006). PYTHIA 6.4 physics and manual. JHEP, 05, 026. doi:10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175.

    Google Scholar 

  17. Kramer, M., Kulesza, A., et al. (2012). Supersymmetry production cross sections in pp collisions at \(\sqrt{s}=7\) Tev. Technical report CERN. arXiv:1206.2892.

  18. Martin, A. D., et al. (2009). Parton distributions for the LHC. The European Physical Journal C, 63, 189–285. doi:10.1140/epjc/s10052-009-1072-5. arXiv:0901.0002.

    Google Scholar 

  19. Nadolsky, P. M., Lai, H.-L., et al. (2008). Implications of CTEQ global analysis for collider observables. Physical Review D, 78, 013004. doi:10.1103/PhysRevD.78.013004. arXiv:0802.0007.

  20. ATLAS Collaboration. (2012). Performance of the reconstruction and identification of hadronic tau decays in ATLAS with 2011 data. Technical report ATLAS-CONF-2012-142. Geneva: CERN.

    Google Scholar 

  21. ATLAS Collaboration. (2015). Jet energy measurement and its systematic uncertainty in proton-proton collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. The European Physical Journal C, 75(1), 17. doi:10.1140/epjc/s10052-014-3190-y. ISSN: 1434-6044.

  22. ATLAS Collaboration. (2014). Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton-proton collision data. The European Physical Journal C, 74(7), 2941. doi:10.1140/epjc/s10052-014-2941-0. arXiv:1404.2240.

  23. ATLAS Collaboration. (2011). Commissioning of the ATLAS high-performance b-tagging algorithms in the 7 TeV collision data. Technical report ATLAS-CONF-2011-102. Geneva: CERN.

    Google Scholar 

  24. ATLAS Collaboration. (2012). Performance of missing transverse momentum reconstruction in proton-proton collisions at 7 TeV with ATLAS. The European Physical Journal C, 72, 1844. doi:10.1140/epjc/s10052-011-1844-6. arXiv:1108.5602.

  25. Nachman, B., & Lester, C. G. (2013). Significance variables. Physical Review D, 88, 075013. doi:10.1103/PhysRevD.88.075013. arXiv:1303.7009.

  26. Baak, M., Besjes, G. J., et al. (2014). HistFitter software framework for statistical data analysis. arXiv:1410.1280.

  27. Cranmer, K., Shibata, A., et al. (2012). HistFactory: A tool for creating statistical models for use with RooFit and RooStats. Technical report CERN-OPEN-2012-016. CERN.

    Google Scholar 

  28. Moneta, L., et al. (2010). The roostats project. arXiv:1009.1003.

  29. ATLAS Collaboration. (2013). Performance of missing transverse momentum reconstruction in ATLAS studied in proton-proton collisions recorded in 2012 at 8 TeV. Technical report ATLAS-CONF-2013-082. Geneva: CERN.

    Google Scholar 

  30. ATLAS Luminosity Public Results. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults.

  31. Catani, S., Cieri, L., et al. (2009). Vector boson production at hadron colliders: A fully exclusive QCD calculation at NNLO. Physical Review Letters, 103, 082001. doi:10.1103/PhysRevLett.103.082001. arXiv:0903.2120.

  32. Cacciari, M., Czakon, M., et al. (2012). Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation. Physics Letters B, 710(4), 612–622.

    Google Scholar 

  33. Aliev, M., Lacker, H., et al. (2011). HATHOR: HAdronic top and heavy quarks crOss section calculatoR. Computer Physics Communications, 182, 1034. doi:10.1016/j.cpc.2010.12.040. arXiv:1007.1327.

    Google Scholar 

  34. Czakon, M., & Mitov, A. (2012). NNLO corrections to top-pair production at hadron colliders: The all-fermionic scattering channels. Journal of High Energy Physics, 2012(12), 1–18.

    Google Scholar 

  35. Butterworth, J. M., Forshaw, J. R., & Seymour, M. H. (1996). Multiparton interactions in photoproduction at HERA. Zeitschrift für Physik C, 72, 637. doi:10.1007/s002880050286. arXiv:hep-ph/9601371.

    Google Scholar 

  36. Kersevan, B. P., & Richter-Was, E. (2013). The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1. Computer Physics Communications, 184(3), 919–985.

    Article  ADS  MATH  Google Scholar 

  37. ATLAS Collaboration. (2013). Pile-up subtraction and suppression for jets in ATLAS. Technical report ATLAS-CONF-2013-083. Geneva: CERN.

    Google Scholar 

  38. ATLAS Collaboration. (2013). Jet energy resolution in proton-proton collisions at \(\sqrt{s}=7\) TeV recorded in 2010 with the ATLAS detector. The European Physical Journal C, 73(3), 1–27.

    Google Scholar 

  39. ATLAS Collaboration. (2012). Measurement of the b-tag efficiency in a sample of jets containing Muons with 5 \(fb^{- 1}\) of data from the ATLAS detector. Technical report ATLAS-CONF-2012-043. Geneva: CERN.

    Google Scholar 

  40. ATLAS Collaboration. (2012). Measuring the b-tag efficiency in a top-pair sample with 4.7 \(fb^{-1}\) of data from the ATLAS detector. Technical report ATLAS-CONF-2012-097. Geneva: CERN.

    Google Scholar 

  41. ATLAS Collaboration. (2012). B-jet tagging calibration on c-jets containing \(D^{\star +}\) mesons. Technical report ATLAS-CONF-2012-039. Geneva: CERN.

    Google Scholar 

  42. ATLAS Collaboration. (2012). Measurement of the mistag rate with 5 \(fb^{- 1}\) of data collected by the ATLAS detector. Technical report ATLAS-CONF-2012-040. Geneva: CERN.

    Google Scholar 

  43. ATLAS Collaboration. (2013). Improved luminosity determination in pp collisions at \(\sqrt{s}=7\) TeV using the ATLAS detector at the LHC. The European Physical Journal C, 73, 2518. doi:10.1140/epjc/s10052-013-2518-3. arXiv:1302.4393.

  44. Lai, H.-L., Guzzi, M., et al. (2010). New parton distributions for collider physics. Physical Review D, 82, 074024. doi:10.1103/PhysRevD.82.074024. arXiv:1007.2241.

  45. Catani, S., et al. (2001). QCD matrix elements+ parton showers. Journal of High Energy Physics, 2001(11), 063.

    Google Scholar 

  46. ATLAS Collaboration. (2012). Measurement of the cross section for the production of a W boson in association with b-jets in pp collisions at with the ATLAS detector. Physics Letters B, 707(5), 418–437.

    Google Scholar 

  47. Cowan, G., et al. (2011). Asymptotic formulae for likelihood-based tests of new physics. The European Physical Journal C, 71, 1554. doi:10.1140/epjc/s10052-011-1554-0. arXiv:1007.1727.

    Google Scholar 

  48. Read, A. (2002). Presentation of search results: The \(CL_{s}\) technique. Journal of Physics G: Nuclear and Particle Physics, 28, 2693–2704. doi:10.1088/0954-3899/28/10/313.

    Google Scholar 

  49. ATLAS Collaboration. (2012). Search for top and bottom squarks from gluino pair production in final states with missing transverse energy and at least three b jets with the ATLAS detector. The European Physical Journal C, 72, 2174. doi:10.1140/epjc/s10052-012-2174-z. arXiv:1207.4686.

  50. CMS Collaboration. (2013). Search for supersymmetry in hadronic final states with missing transverse energy using the variables \(\alpha \) T and b-quark multiplicity in pp collisions at \(\sqrt{s}=8\) TeV. The European Physical Journal C, 73(9), 1–31.

    Google Scholar 

  51. CMS Collaboration. (2013). Interpretation of searches for supersymmetry with simplified models. Physical Review D, 88(5), 052017. doi:10.1103/PhysRevD.88.052017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireia Crispín Ortuzar .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ortuzar, M. . (2016). Search for New Phenomena in Events with Large Jet Multiplicities. In: High Jet Multiplicity Physics at the LHC. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-43461-2_3

Download citation

Publish with us

Policies and ethics