Skip to main content

Proteomics of Flooding-Stressed Plants

  • Chapter
  • First Online:
Agricultural Proteomics Volume 2

Abstract

Climate change is a growing worldwide concern with respect to food security. Abiotic stresses are responsible for huge annual losses in agricultural productivity. In particular, flooding is a serious threat for many crops, including wheat and soybean, which exhibit dramatic reductions in growth and yield that result in the annual loss of billions of dollars. Flooding induces various adverse morphological and physiological effects, and forces plants to shift from aerobic to anaerobic metabolism through modifications at the molecular level. Proteomic analyses have greatly contributed to unraveling the flooding stress -response mechanisms that are adopted by different plant species, particularly soybean. The proteomic study of post-flooding recovery mechanisms has contributed to the search for flooding-responsive proteins and those that play essential roles in the transition from stress to post-stress conditions. This review summarizes the major findings from proteomic studies that have examined flooding stress-response mechanisms in important crop species. Furthermore, protein abundance changes and their significance during post-flooding recovery are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  2. Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427

    Article  CAS  PubMed  Google Scholar 

  3. Hashiguchi A, Ahsan N, Komatsu S (2010) Proteomics application of crops in the context of climatic changes. Food Res Int 43:1803–1813

    Article  CAS  Google Scholar 

  4. Bailey-Serres J, Voesenek L (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  5. Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S et al (2013) Global flood risk under climate change. Nat Clim Change 3:816–821

    Article  Google Scholar 

  6. Jackson M, Colmer T (2005) Response and adaptation by plants to flooding stress. Ann Bot 96:501–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Armstrong W, Drew M (2002) Root growth and metabolism under oxygen deficiency. Plant Roots Hidden Half 3:729–761

    Google Scholar 

  8. Vervuren P, Blom C, De Kroon H (2003) Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. J Ecol 91:135–146

    Article  Google Scholar 

  9. Sun L, Chen S, Chao L, Sun T (2007) Effects of flooding on changes in Eh, pH and speciation of cadmium and lead in contaminated soil. Bull Environ Contam Toxicol 79:514–518

    Article  CAS  PubMed  Google Scholar 

  10. Michalcová D, Gilbert JC, Lawson CS, Gowing DJ, Marrs RH (2011) The combined effect of waterlogging, extractable P and soil pH on α-diversity: a case study on mesotrophic grasslands in the UK. Plant Ecol 212:879–888

    Article  Google Scholar 

  11. Gibbs J, Greenway H (2003) Review: mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:353

    Article  Google Scholar 

  12. Voesenek L, Colmer T, Pierik R, Millenaar F, Peeters A (2006) How plants cope with complete submergence. New Phytol 170:213–226

    Article  CAS  PubMed  Google Scholar 

  13. Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shimamura S, Yamamoto R, Nakamura T, Shimada S, Komatsu S (2010) Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann Bot 106:277–284

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jackson M, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    Article  CAS  Google Scholar 

  16. Sauter M (2013) Root responses to flooding. Curr Opin Plant Biol 16:282–286

    Article  PubMed  Google Scholar 

  17. Komatsu S, Sakata K, Nanjo Y (2015) ‘Omics’ techniques and their use to identify how soybean responds to flooding. J Anal Sci Technol 6:1–8

    Article  Google Scholar 

  18. Isaacson T, Damasceno CM, Saravanan RS, He Y, Catalá C, Saladié M et al (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1:769–774

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh D, Xu J (2014) Abiotic stress responses in plant roots: a proteomics perspective. Root Syst Biol 5:73–86

    Google Scholar 

  20. Yin X, Sakata K, Komatsu S (2014) Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress. J Proteome Res 13:5618–5634

    Article  CAS  PubMed  Google Scholar 

  21. Yin X, Komatsu S (2015) Quantitative proteomics of nuclear phosphoproteins in the root tip of soybean during the initial stages of flooding stress. J Proteomics 119:183–195

    Article  CAS  PubMed  Google Scholar 

  22. Nanjo Y, Skultety L, Ashraf Y, Komatsu S (2010) Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. J Proteome Res 9:3989–4002

    Article  CAS  PubMed  Google Scholar 

  23. Nanjo Y, Nakamura T, Komatsu S (2013) Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics. J Proteome Res 12:4785–4798

    Article  CAS  PubMed  Google Scholar 

  24. Mustafa G, Sakata K, Komatsu S (2015) Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteomics 128:280–297

    Article  CAS  PubMed  Google Scholar 

  25. Kamal AHM, Rashid H, Sakata K, Komatsu S (2015) Gel-free quantitative proteomic approach to identify cotyledon proteins in soybean under flooding stress. J Proteomics 112:1–13

    Article  CAS  PubMed  Google Scholar 

  26. Komatsu S, Kobayashi Y, Nishizawa K, Nanjo Y, Furukawa K (2010) Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. Amino Acids 39:1435–1449

    Article  CAS  PubMed  Google Scholar 

  27. Komatsu S, Sugimoto T, Hoshino T, Nanjo Y, Furukawa K (2010) Identification of flooding stress responsible cascades in root and hypocotyl of soybean using proteome analysis. Amino Acids 38:729–738

    Article  CAS  PubMed  Google Scholar 

  28. Komatsu S, Thibaut D, Hiraga S, Kato M, Chiba M, Hashiguchi A et al (2011) Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots. Plant Mol Biol 77:309–322

    Article  CAS  PubMed  Google Scholar 

  29. Mustafa G, Komatsu S (2014) Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress. Front Plant Sci 5:627

    Google Scholar 

  30. Oh M, Komatsu S, Nanjo Y (2014) Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress. Front Plant Sci 5:559

    Google Scholar 

  31. Won OhM, Nanjo Y, Komatsu S (2014) Identification of nuclear proteins in soybean under flooding stress using proteomic technique. Protein Pept Lett 21:458–467

    Article  CAS  Google Scholar 

  32. Komatsu S, Han C, Nanjo Y, Altaf-Un-Nahar M, Wang K, He D et al (2013) Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J Proteome Res 12:4769–4784

    Article  CAS  PubMed  Google Scholar 

  33. Mustafa G, Sakata K, Hossain Z, Komatsu S (2015) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteomics 122:100–118

    Article  CAS  PubMed  Google Scholar 

  34. Kamal AHM, Komatsu S (2015) Involvement of reactive oxygen species and mitochondrial proteins in biophoton emission in roots of soybean plants under flooding stress. J Proteome Res 14:2219–2236

    Article  CAS  PubMed  Google Scholar 

  35. Haque E, Kawaguchi K, Komatsu S (2011) Analysis of proteins in aerenchymatous seminal roots of wheat grown in hypoxic soils under waterlogged conditions (supplementary material). Protein Pept Lett 18:912–924

    Article  CAS  PubMed  Google Scholar 

  36. Kong FJ, Oyanagi A, Komatsu S (2010) Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. Biochim Biophys Acta 1804:124–136

    Article  CAS  PubMed  Google Scholar 

  37. Huang S, Greenway H, Colmer TD, Millar AH (2005) Protein synthesis by rice coleoptiles during prolonged anoxia: implications for glycolysis, growth and energy utilization. Ann Bot 96:703–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sadiq I, Fanucchi F, Paparelli E, Alpi E, Bachi A, Alpi A et al (2011) Proteomic identification of differentially expressed proteins in the anoxic rice coleoptile. J Plant Physiol 168:2234–2243

    Article  CAS  PubMed  Google Scholar 

  39. Ahsan N, Lee DG, Lee SH, Kang KY, Bahk JD, Choi MS et al (2007) A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol Plant 131:555–570

    Article  CAS  PubMed  Google Scholar 

  40. Ahsan N, Lee D-G, Lee S-H, Lee K-W, Bahk JD, Lee B-H (2007) A proteomic screen and identification of waterlogging-regulated proteins in tomato roots. Plant Soil 295:37–51

    Article  CAS  Google Scholar 

  41. Chang WW, Huang L, Shen M, Webster C, Burlingame AL, Roberts JK (2000) Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol 122:295–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Y, Chen X, Wang H, Bao Y, Zhang W (2014) Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize. Proteome Sci 12:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218

    Article  CAS  Google Scholar 

  44. Shimomura M, Kanamori H, Komatsu S, Namiki N, Mukai Y, Kurita K et al (2015) The Glycine max cv. Enrei genome for improvement of Japanese soybean cultivars. Int J Genomics 1–8

    Google Scholar 

  45. Githiri S, Watanabe S, Harada K, Takahashi R (2006) QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed 125:613–618

    Article  CAS  Google Scholar 

  46. Hashiguchi A, Sakata K, Komatsu S (2009) Proteome analysis of early-stage soybean seedlings under flooding stress. J Proteome Res 8:2058–2069

    Article  CAS  PubMed  Google Scholar 

  47. Nakayama N, Hashimoto S, Shimada S, Takahashi M, Kim Y, Oya T et al (2004) The effect of flooding stress at the germination stage on the growth of soybean [Glycine max] in relation to initial seed moisture content. Jpn J Crop Sci (Jpn) 74:325–329

    Google Scholar 

  48. Shimamura S, Mochizuki T, Nada Y, Fukuyama M (2003) Formation and function of secondary aerenchyma in hypocotyl, roots and nodules of soybean (Glycine max) under flooded conditions. Plant Soil 251:351–359

    Article  CAS  Google Scholar 

  49. Lee K-H, Park SW, Kwon YW (2003) Enforced early development of adventitious roots increases flooding tolerance in soybean. Jpn J Crop Sci 72:82–88

    Article  Google Scholar 

  50. Bacanamwo M, Purcell LC (1999) Soybean root morphological and anatomical traits associated with acclimation to flooding. Crop Sci 39:143–149

    Article  Google Scholar 

  51. Hossain Z, Komatsu S (2014) Potentiality of soybean proteomics in untying the mechanism of flood and drought stress tolerance. Proteomes 2:107–127

    Article  CAS  Google Scholar 

  52. Nanjo Y, Skultety L, UváČKová LU, Klubicová KN, Hajduch M, Komatsu S (2011) Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings. J Proteome Res 11:372–385

    Article  PubMed  CAS  Google Scholar 

  53. Nanjo Y, Maruyama K, Yasue H, Yamaguchi-Shinozaki K, Shinozaki K, Komatsu S (2011) Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings. Plant Mol Biol 77:129–144

    Article  CAS  PubMed  Google Scholar 

  54. Komatsu S, Yamamoto A, Nakamura T, Nouri M-Z, Nanjo Y, Nishizawa K et al (2011) Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. J Proteome Res 10:3993–4004

    Article  CAS  PubMed  Google Scholar 

  55. Komatsu S, Kuji R, Nanjo Y, Hiraga S, Furukawa K (2012) Comprehensive analysis of endoplasmic reticulum-enriched fraction in root tips of soybean under flooding stress using proteomics techniques. J Proteomics 77:531–560

    Article  CAS  PubMed  Google Scholar 

  56. Komatsu S, Hiraga S, Nouri MZ (2014) Analysis of flooding-responsive proteins localized in the nucleus of soybean root tips. Mol Biol Rep 41:1127–1139

    Article  CAS  PubMed  Google Scholar 

  57. Komatsu S, Makino T, Yasue H (2013) Proteomic and biochemical analyses of the cotyledon and root of flooding-stressed soybean plants. PLoS ONE 8:e65301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Won OhM, Nanjo Y, Komatsu S (2014) Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress. Protein Pept Lett 21:911–947

    Article  CAS  Google Scholar 

  59. Gill BS, Appels R, Botha-Oberholster A-M, Buell CR, Bennetzen JL, Chalhoub B et al (2004) A workshop report on wheat genome sequencing international genome research on wheat consortium. Genetics 168:1087–1096

    Article  PubMed  PubMed Central  Google Scholar 

  60. Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manès Y, Mather DE et al (2010) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452

    Google Scholar 

  61. Safar J, Simkova H, Kubalakova M, Cihalikova J, Suchankova P, Bartos J et al (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res 129:211–223

    Article  CAS  PubMed  Google Scholar 

  62. Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’amore R, Allen AM et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McDonald G, Setter TL, Waters I, Tugwell R (2006) Screening for waterlogging tolerance of wheat in the field in Western Australia. In: Proceedings of the 13th Australian society of agronomy conference, Perth, Western Australia, pp 10–14

    Google Scholar 

  64. Sasaki T, Burr B (2000) International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr Opin Plant Biol 3:138–142

    Article  CAS  PubMed  Google Scholar 

  65. Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  PubMed  Google Scholar 

  66. Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  67. Kim H, Hurwitz B, Yu Y, Collura K, Gill N, Sanmiguel P et al (2008) Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza. Genome Biol 9:R45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot 103:181–196

    Article  CAS  PubMed  Google Scholar 

  69. Yamauchi M, Aragones DV, Casayuran PR, Cruz PC, Asis CA, Cruz RT (2000) Seedling establishment and grain yield of tropical rice sown in puddled soil. Agron J 92:275–282

    Article  Google Scholar 

  70. Millar AH, Trend AE, Heazlewood JL (2004) Changes in the mitochondrial proteome during the anoxia to air transition in rice focus around cytochrome-containing respiratory complexes. J Biol Chem 279:39471–39478

    Article  CAS  PubMed  Google Scholar 

  71. Toor R, Lister C, Savage G (2005) Antioxidant activities of New Zealand-grown tomatoes. Int J Food Sci Nutr 56:597–605

    Article  CAS  PubMed  Google Scholar 

  72. Michaelson MJ, Price HJ, Ellison JR, Johnston JS (1991) Comparison of plant DNA contents determined by Feulgen microspectrophotometry and laser flow cytometry. Am J Bot 78:183–188

    Google Scholar 

  73. Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  74. Lenucci MS, Cadinu D, Taurino M, Piro G, Dalessandro G (2006) Antioxidant composition in cherry and high-pigment tomato cultivars. J Agric Food Chem 54:2606–2613

    Article  CAS  PubMed  Google Scholar 

  75. Jackson MB, Davies WJ, Else MA (1996) Pressure–flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants. Ann Bot 77:17–24

    Article  Google Scholar 

  76. Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P (2010) Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J 63:551–562

    Article  CAS  PubMed  Google Scholar 

  77. Else MA, Janowiak F, Atkinson CJ, Jackson MB (2009) Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann Bot 103:313–323

    Article  CAS  PubMed  Google Scholar 

  78. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  79. Meisrimler C-N, Buck F, Lüthje S (2014) Alterations in soluble Class III peroxidases of maize shoots by flooding stress. Proteomes 2:303–322

    Article  CAS  Google Scholar 

  80. Watson BS, Asirvatham VS, Wang L, Sumner LW (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131:1104–1123

    Article  PubMed  PubMed Central  Google Scholar 

  81. Komatsu S, Hossain Z (2013) Organ-specific proteome analysis for identification of abiotic stress response mechanism in crop. Front Plant Sci 4:71

    PubMed  PubMed Central  Google Scholar 

  82. Gomes AS, Kozlowski T (1980) Growth responses and adaptations of Fraxinus pennsylvanica seedlings to flooding. Plant Physiol 66:267–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mielke MS, A-aF De Almeida, Gomes FP, MaG Aguilar, PaO Mangabeira (2003) Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environ Exp Bot 50:221–231

    Article  CAS  Google Scholar 

  84. Maayan I, Shaya F, Ratner K, Mani Y, Lavee S, Avidan B et al (2008) Photosynthetic activity during olive (Olea europaea) leaf development correlates with plastid biogenesis and Rubisco levels. Physiol Plant 134:547–558

    Article  CAS  PubMed  Google Scholar 

  85. Przywara G, Stępniewski W (1999) The influence of waterlogging at different temperatures on penetration depth and porosity of roots and on stomatal diffusive resistance of pea and maize seedlings. Acta Physiol Plant 21:405–411

    Article  Google Scholar 

  86. Zhu W, Hu J, Wang X, Tian J, Komatsu S (2015) Organ-specific analysis of mahonia using gel-free/label-free proteomic technique. J Proteome Res 14:2669–2685

    Article  CAS  PubMed  Google Scholar 

  87. Hashimoto M, Komatsu S (2007) Proteomic analysis of rice seedlings during cold stress. Proteomics 7:1293–1302

    Article  CAS  PubMed  Google Scholar 

  88. Widjaja I, Naumann K, Roth U, Wolf N, Mackey D, Dangl JL et al (2009) Combining subproteome enrichment and Rubisco depletion enables identification of low abundance proteins differentially regulated during plant defense. Proteomics 9:138–147

    Article  CAS  PubMed  Google Scholar 

  89. Cellar NA, Kuppannan K, Langhorst ML, Ni W, Xu P, Young SA (2008) Cross species applicability of abundant protein depletion columns for ribulose-1, 5-bisphosphate carboxylase/oxygenase. J Chromatogr B 861:29–39

    Article  CAS  Google Scholar 

  90. Xu Y, Wang B-C, Zhu Y-X (2007) Identification of proteins expressed at extremely low level in Arabidopsis leaves. Biochem Biophys Res Commun 358:808–812

    Article  CAS  PubMed  Google Scholar 

  91. Khatoon A, Rehman S, Hiraga S, Makino T, Komatsu S (2012) Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress. J Proteomics 75:5706–5723

    Article  CAS  PubMed  Google Scholar 

  92. Donnelly BE, Madden RD, Ayoubi P, Porter DR, Dillwith JW (2005) The wheat (Triticum aestivum L.) leaf proteome. Proteomics 5:1624–1633

    Article  CAS  PubMed  Google Scholar 

  93. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  94. Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT et al (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 51:61–70

    Article  CAS  PubMed  Google Scholar 

  95. Ahsan N, Komatsu S (2009) Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Proteomics 9:4889–4907

    Article  CAS  PubMed  Google Scholar 

  96. Boschetti E, Bindschedler LV, Tang C, Fasoli E, Righetti PG (2009) Combinatorial peptide ligand libraries and plant proteomics: a winning strategy at a price. J Chromatogr A 1216:1215–1222

    Article  CAS  PubMed  Google Scholar 

  97. Yanagawa Y, Komatsu S (2012) Ubiquitin/proteasome-mediated proteolysis is involved in the response to flooding stress in soybean roots, independent of oxygen limitation. Plant Sci 185:250–258

    Article  PubMed  CAS  Google Scholar 

  98. Drew MC, Cobb BG, Johnson JR, Andrews D, Morgan PW, Jordan W et al (1994) Metabolic acclimation of root tips to oxygen deficiency. Ann Bot 74:281–286

    Article  Google Scholar 

  99. Mathesius U, Djordjevic MA, Oakes M, Goffard N, Haerizadeh F, Weiller GF et al (2011) Comparative proteomic profiles of the soybean (Glycine max) root apex and differentiated root zone. Proteomics 11:1707–1719

    Article  CAS  PubMed  Google Scholar 

  100. Komatsu S, Nakamura T, Sugimoto Y, Sakamoto K (2014) Proteomic and metabolomic analyses of soybean root tips under flooding stress. Protein Pept Lett 21:865–884

    Article  CAS  PubMed  Google Scholar 

  101. Hossain Z, López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2009) Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. J Plant Physiol 166:1391–1404

    Article  CAS  PubMed  Google Scholar 

  102. Oh M, Komatsu S (2015) Characterization of proteins in soybean roots under flooding and drought stresses. J Proteomics 114:161–181

    Article  CAS  PubMed  Google Scholar 

  103. Khan MN, Sakata K, Hiraga S, Komatsu S (2014) Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots. J Proteome Res 13:5812–5828

    Article  CAS  PubMed  Google Scholar 

  104. Komatsu S, Yamamoto R, Nanjo Y, Mikami Y, Yunokawa H, Sakata K (2009) A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. J Proteome Res 8:4766–4778

    Article  CAS  PubMed  Google Scholar 

  105. Alam I, Sharmin SA, Kim K-H, Yang JK, Choi MS, Lee B-H (2010) Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil 333:491–505

    Article  CAS  Google Scholar 

  106. Kausar R, Hossain Z, Makino T, Komatsu S (2012) Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Mol Biol Rep 39:10573–10579

    Article  CAS  PubMed  Google Scholar 

  107. Salavati A, Khatoon A, Nanjo Y, Komatsu S (2012) Analysis of proteomic changes in roots of soybean seedlings during recovery after flooding. J Proteomics 75:878–893

    Article  CAS  PubMed  Google Scholar 

  108. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  109. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48:909–930

    Google Scholar 

  110. Komatsu S, Kamal AHM, Makino T, Hossain Z (2014) Ultraweak photon emission and proteomics analyses in soybean under abiotic stress. Biochim Biophys Acta 1844:1208–1218

    Article  CAS  PubMed  Google Scholar 

  111. Shi F, Yamamoto R, Shimamura S, Hiraga S, Nakayama N, Nakamura T et al (2008) Cytosolic ascorbate peroxidase 2 (cAPX 2) is involved in the soybean response to flooding. Phytochemistry 69:1295–1303

    Article  CAS  PubMed  Google Scholar 

  112. Khan MN, Sakata K, Komatsu S (2015) Proteomic analysis of soybean hypocotyl during recovery after flooding stress. J Proteomics 121:15–27

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 15H04445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setsuko Komatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khan, M.N., Komatsu, S. (2016). Proteomics of Flooding-Stressed Plants. In: Salekdeh, G. (eds) Agricultural Proteomics Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-43278-6_4

Download citation

Publish with us

Policies and ethics