Skip to main content

Fluorescence Imaging in Breast Reconstruction: Minimizing Complications and Improving Outcomes

  • Chapter
  • First Online:
Operative Approaches to Nipple-Sparing Mastectomy

Abstract

As the treatment for breast cancer continues to evolve and improve, there is greater patient and surgeon interest in minimizing the morbidity associated with repeat operations, while enhancing breast cosmesis. Nipple-sparing mastectomy combined with expander/implant reconstruction, direct-to-implant reconstruction, or immediate reconstruction with autologous tissue are significant advances in the reconstructive surgeon’s armamentarium in order to restore the natural breast form while minimizing the physical and psychological morbidity associated with repeated operations. Nevertheless, adoption of these techniques has been limited secondary to technical complexity and concern for mastectomy skin flap necrosis. Intraoperative indocyanine green angiography (SPY Elite, Novadaq Technologies Inc., Mississauga, ON) offers a solution to these concerns by providing real-time in-vivo evaluation of skin flap perfusion. Using this technology, the surgeon is able to minimize the morbidity associated with repeat operations due to flap ischemia or congestion and expand the patient population for whom immediate reconstruction following nipple-sparing mastectomy is possible. Here we present our institution’s algorithm and techniques for safe and reliable breast reconstruction following nipple-sparing mastectomy using intraoperative indocyanine green angiography (ICG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Surveillance, Epidemiology, and End Results Program, National Cancer Institute: SEER stat fact sheets: female breast cancer. http://seer.cancer.gov/statfacts/html/breast.html. Accessed 28 Feb 2016.

  2. Mahmood U, Hanlon AL, Koshy M, Buras R, Chumsri S, Tkaczuk KH, et al. Increasing national mastectomy rates for the treatment of early stage breast cancer. Ann Surg Oncol. 2013;20(5):1436–43.

    Article  PubMed  Google Scholar 

  3. Kerlikowske K. Epidemiology of ductal carcinoma in situ. J Natl Cancer Inst Monogr. 2010;2010(41):139–41.

    Article  PubMed  Google Scholar 

  4. Wong SM, Freedman RA, Sagara Y, Aydogan F, Barry WT, Golshan M. Growing use of contralateral prophylactic mastectomy despite no improvement in long-term survival for invasive breast cancer. Ann Surg. 2016;PMID:26967636.

    Google Scholar 

  5. Orzalesi L, Casella D, Santi C, Cecconi L, Murgo R, Rinaldi S, et al. Nipple-sparing mastectomy: surgical and oncological outcomes from a national multicentric registry with 913 patients (1006 cases) over a six year period. Breast. 2016;25:75–81.

    Article  PubMed  Google Scholar 

  6. Murthy V, Chamberlain RS. Defining a place for nipple-sparing mastectomy in modern breast care: an evidence based review. Breast J. 2013;19(6):571–81.

    Article  PubMed  Google Scholar 

  7. Sisco M, Yao KA. Nipple-sparing mastectomy: a contemporary perspective. J Surg Oncol. 2016.

    Google Scholar 

  8. Mallon P, Feron JG, Couturaud B, Fitoussi A, Lemasurier P, Guihard T, et al. The role of nipple-sparing mastectomy in breast cancer: a comprehensive review of the literature. Plast Reconstr Surg. 2013;131(5):969–84.

    Article  CAS  PubMed  Google Scholar 

  9. Endara M, Chen D, Verma K, Nahabedian MY, Spear SL. Breast reconstruction following nipple-sparing mastectomy: a systematic review of the literature with pooled analysis. Plast Reconstr Surg. 2013;132(5):1043–54.

    Article  CAS  PubMed  Google Scholar 

  10. Spear SL, Hannan CM, Willey SC, Cocilovo C. Nipple-sparing mastectomy. Plast Reconstr Surg. 2009;123(6):1665–73.

    Article  CAS  PubMed  Google Scholar 

  11. Wei CH, Scott AM, Price AN, Miller HC, Klassen AF, Jhanwar SM, et al. Psychosocial and sexual well-being following nipple-sparing mastectomy and reconstruction. Breast J. 2016;22(1):10–7.

    Article  PubMed  Google Scholar 

  12. Bernini M, Calabrese C, Cecconi L, Santi C, Gjondedaj U, Roselli J, et al. Subcutaneous direct-to-implant breast reconstruction: surgical, functional, and aesthetic results after long-term follow-up. Plast Reconstr Surg Glob Open. 2015;3(12):e574.

    Article  PubMed  Google Scholar 

  13. Colwell AS, Tessler O, Lin AM, Liao E, Winograd J, Cetrulo CL, et al. Breast reconstruction following nipple-sparing mastectomy: predictors of complications, reconstruction outcomes, and 5-year trends. Plast Reconstr Surg. 2014;133(3):496–506.

    Article  CAS  PubMed  Google Scholar 

  14. Salzberg CA, Ashikari AY, Koch RM, Chabner-Thompson E. An 8-year experience of direct-to-implant immediate breast reconstruction using human acellular dermal matrix (AlloDerm). Plast Reconstr Surg. 2011;127(2):514–24.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng A, Lakhiani C, Saint-Cyr M. Treatment of capsular contracture using complete implant coverage by acellular dermal matrix: a novel technique. Plast Reconstr Surg. 2013;132(3):519–29.

    Article  CAS  PubMed  Google Scholar 

  16. Clemens MW, Kronowitz SJ. Acellular dermal matrix in irradiated tissue expander/implant-based breast reconstruction: evidence-based review. Plast Reconstr Surg. 2012;130(5 Suppl 2):27S–34.

    Article  CAS  PubMed  Google Scholar 

  17. Gdalevitch P, Ho A, Genoway K, Alvrtsyan H, Bovill E, Lennox P, et al. Direct-to-implant single-stage immediate breast reconstruction with acellular dermal matrix: predictors of failure. Plast Reconstr Surg. 2014;133(6):738–47.

    Google Scholar 

  18. Delgado JF, Garcia-Guilarte RF, Palazuelo MR, Mendez JI, Perez CC. Immediate breast reconstruction with direct, anatomic, gel-cohesive, extra-projection prosthesis: 400 cases. Plast Reconstr Surg. 2010;125(6):1599–605.

    Article  CAS  PubMed  Google Scholar 

  19. Kim SE, Jung DW, Chung KJ, Lee JH, Kim TG, Kim YH, et al. Immediate direct-to-implant breast reconstruction using anatomical implants. Arch Plast Surg. 2014;41(5):529–34.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nahabedian MY. Implant-based breast reconstruction following conservative mastectomy: one-stage vs. two-stage approach. Gland Surg. 2016;5(1):47–54.

    PubMed  PubMed Central  Google Scholar 

  21. Roostaeian J, Sanchez I, Vardanian A, Herrera F, Galanis C, Da Lio A, et al. Comparison of immediate implant placement versus the staged tissue expander technique in breast reconstruction. Plast Reconstr Surg. 2012;129(6):909–18.

    Article  Google Scholar 

  22. Hunsicker LM, Ashikari AY, Berry C, Koch RM, Salzberg CA. Short-term complications associated with acellular dermal matrix-assisted direct-to-implant breast reconstruction. Ann Plast Surg. 2016;PMID:26849284.

    Google Scholar 

  23. Colwell AS, Damjanovic B, Zahedi B, Medford-Davis L, Hertl C, Austen Jr WG. Retrospective review of 331 consecutive immediate single-stage implant reconstructions with acellular dermal matrix: indications, complications, trends, and costs. Plast Reconstr Surg. 2011;128(6):1170–8.

    Article  CAS  PubMed  Google Scholar 

  24. Jansen LA, Macadam SA. The use of AlloDerm in postmastectomy alloplastic breast reconstruction: part II. A cost analysis. Plast Reconstr Surg. 2011;127(6):2245–54.

    Article  CAS  PubMed  Google Scholar 

  25. Mayo Clinic. Symposium on diagnostic applications of indicator dilution techniques. Proc Staff Meet Mayo Clin. 1957;32:463–508.

    Google Scholar 

  26. Kogure K, Choromokos E. Infrared absorption angiography. J Appl Physiol. 1969;26(1):154–7.

    CAS  PubMed  Google Scholar 

  27. Hochheimer BF. Angiography of the retina with indocyanine green. Arch Ophthalmol. 1971;86(5):564–5.

    Article  CAS  PubMed  Google Scholar 

  28. Flower RW. Infrared absorption angiography of the choroid and some observations on the effects of high intraocular pressures. Am J Ophthalmol. 1972;74(4):600–14.

    Article  CAS  PubMed  Google Scholar 

  29. Yannuzzi LA. Indocyanine green angiography: a perspective on use in the clinical setting. Am J Ophthalmol. 2011;151(5):745–51.e1.

    Article  PubMed  Google Scholar 

  30. Flower RW, Hochheimer BF. Indocyanine green dye fluorescence and infrared absorption choroidal angiography performed simultaneously with fluorescein angiography. Johns Hopkins Med J. 1976;138(2):33–42.

    CAS  PubMed  Google Scholar 

  31. Alander JT, Kaartinen I, Laakso A, Patila T, Spillmann T, Tuchin VV, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imag. 2012;2012:940585.

    Article  Google Scholar 

  32. Yannuzzi LA, Slakter JS, Sorenson JA, Guyer DR, Orlock DA. Digital indocyanine green videoangiography and choroidal neovascularization. Retina. 1992;12(3):191–223.

    Article  CAS  PubMed  Google Scholar 

  33. Hope-Ross M, Yannuzzi LA, Gragoudas ES, Guyer DR, Slakter JS, Sorenson JA, et al. Adverse reactions due to indocyanine green. Ophthalmology. 1994;101(3):529–33.

    Article  CAS  PubMed  Google Scholar 

  34. Raabe A, Beck J, Gerlach R, Zimmermann M, Seifert V. Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow. Neurosurgery. 2003;52(1):132–9. discussion 9.

    PubMed  Google Scholar 

  35. LifeCell. SPY Elite Pack and SPY Elite Kit instructions for use 2011.

    Google Scholar 

  36. Gurtner GC, Jones GE, Neligan PC, Newman MI, Phillips BT, Sacks JM, et al. Intraoperative laser angiography using the SPY system: review of the literature and recommendations for use. Ann Surg Innov Res. 2013;7(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sood M, Glat P. Potential of the SPY intraoperative perfusion assessment system to reduce ischemic complications in immediate postmastectomy breast reconstruction. Ann Surg Innov Res. 2013;7(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Phillips BT, Lanier ST, Conkling N, Wang ED, Dagum AB, Ganz JC, et al. Intraoperative perfusion techniques can accurately predict mastectomy skin flap necrosis in breast reconstruction: results of a prospective trial. Plast Reconstr Surg. 2012;129(5):778–88.

    Article  Google Scholar 

  39. Kanuri A, Liu AS, Guo L. Whom should we SPY? A cost analysis of laser-assisted indocyanine green angiography in prevention of mastectomy skin flap necrosis during prosthesis-based breast reconstruction. Plast Reconstr Surg. 2014;133(4):448–54.

    Article  Google Scholar 

  40. Duggal CS, Madni T, Losken A. An outcome analysis of intraoperative angiography for postmastectomy breast reconstruction. Aesthet Surg J. 2014;34(1):61–5.

    Article  PubMed  Google Scholar 

  41. Losken A, Zenn MR, Hammel JA, Walsh MW, Carlson GW. Assessment of zonal perfusion using intraoperative angiography during abdominal flap breast reconstruction. Plast Reconstr Surg. 2012;129(4):618–24.

    Article  Google Scholar 

  42. Newman MI, Samson MC. The application of laser-assisted indocyanine green fluorescent dye angiography in microsurgical breast reconstruction. J Reconstr Microsurg. 2009;25(1):21–6.

    Article  PubMed  Google Scholar 

  43. Pestana IA, Zenn MR. Correlation between abdominal perforator vessels identified with preoperative CT angiography and intraoperative fluorescent angiography in the microsurgical breast reconstruction patient. Ann Plast Surg. 2014;72(6):S144–9.

    Article  CAS  PubMed  Google Scholar 

  44. Chatterjee A, Krishnan NM, Van Vliet MM, Powell SG, Rosen JM, Ridgway EB. A comparison of free autologous breast reconstruction with and without the use of laser-assisted indocyanine green angiography: a cost-effectiveness analysis. Plast Reconstr Surg. 2013;131(5):e693–701.

    Article  Google Scholar 

  45. Chae MP, Hunter-Smith DJ, Rozen WM. Comparative analysis of fluorescent angiography, computed tomographic angiography and magnetic resonance angiography for planning autologous breast reconstruction. Gland Surg. 2015;4(2):164–78.

    PubMed  PubMed Central  Google Scholar 

  46. Ohkuma R, Mohan R, Baltodano PA, Lacayo MJ, Broyles JM, Schneider EB, et al. Abdominally based free flap planning in breast reconstruction with computed tomographic angiography: systematic review and meta-analysis. Plast Reconstr Surg. 2014;133(3):483–94.

    Article  CAS  PubMed  Google Scholar 

  47. Schaverien M, Saint-Cyr M, Arbique G, Brown SA. Arterial and venous anatomies of the deep inferior epigastric perforator and superficial inferior epigastric artery flaps. Plast Reconstr Surg. 2008;121(6):1909–19.

    Article  CAS  PubMed  Google Scholar 

  48. Wong C, Saint-Cyr M, Mojallal A, Schaub T, Bailey SH, Myers S, et al. Perforasomes of the DIEP flap: vascular anatomy of the lateral versus medial row perforators and clinical implications. Plast Reconstr Surg. 2010;125(3):772–82.

    Article  CAS  PubMed  Google Scholar 

  49. Saint-Cyr M, Lakhiani C, Cheng A, Mangum M, Liang J, Livingston E, et al. In-vivo quantitative evaluation of perfusion zones and perfusion gradient in the deep inferior epigastric artery perforator flap. Proc SPIE. 2013;8618:14.

    Google Scholar 

  50. Hartrampf C, Scheflan M, Black P. Breast reconstruction with a transverse abdominal island flap. Plast Reconstr Surg. 1982;69(2):216–25.

    Article  CAS  PubMed  Google Scholar 

  51. Janes L, Hui-Chou H, Matthews J, Sabino J, Singh D. Utilization of near-infrared indocyanine green angiography for immediate and delayed venous outflow assessment in breast reconstruction: a case report. Plast Reconstr Surg Glob Open. 2014;2(e100):3.

    Google Scholar 

  52. Khavanin N, Fine NA, Bethke KP, Mlodinow AS, Khan SA, Jeruss JS, et al. Tumescent technique does not increase the risk of complication following mastectomy with immediate reconstruction. Ann Surg Oncol. 2014;21(2):384–8.

    Article  PubMed  Google Scholar 

  53. Wu C, Kim S, Halvorson EG. Laser-assisted indocyanine green angiography: a critical appraisal. Ann Plast Surg. 2013;70(5):613–9.

    Article  CAS  PubMed  Google Scholar 

  54. Douglas HE, Wilkinson MJ, Mackay IR. Effects of perforator number and location on the total pedicle flow and perfusion of zone IV skin and fat of DIEP flaps. J Plast Reconstr Aesthet Surg. 2014;67(2):212–8.

    Article  PubMed  Google Scholar 

Download references

Disclosures

Dr. Pittman is a consultant for Novadaq, Sientra and MedTronic. Dr. Fan and Dr. Lakhiani have no disclosures to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy A. Pittman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pittman, T.A., Lakhiani, C., Fan, K.L. (2017). Fluorescence Imaging in Breast Reconstruction: Minimizing Complications and Improving Outcomes. In: Harness, J., Willey, S. (eds) Operative Approaches to Nipple-Sparing Mastectomy. Springer, Cham. https://doi.org/10.1007/978-3-319-43259-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43259-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43257-1

  • Online ISBN: 978-3-319-43259-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics