Skip to main content

From Behavioural Studies to Field Application: Improving Biological Control Strategies by Integrating Laboratory Results into Field Experiments

  • Chapter
  • First Online:
Fruit Fly Research and Development in Africa - Towards a Sustainable Management Strategy to Improve Horticulture

Abstract

Biological control and integrated pest management (IPM) of tephritid fruit flies has repeatedly made use of parasitoids as natural enemies to suppress fly populations. Parasitoids, however, are selected to maximize their individual reproductive success, and thus do not necessarily maximize pest suppression at the population level. Furthermore, more than one parasitoid species within a pest-natural enemy assemblage might be available as a potential control agent. This calls for a thorough understanding of behavioural processes in pest-natural enemy interactions to select the best single species, or multiple species, to achieve pest suppression at the population level. We make a case for the importance of laboratory studies in informing field application, while acknowledging that they cannot replicate all the complexity present within an ecological community. Thus, there is still the need for integrating laboratory-based research with field application. Therefore, manipulative field studies are needed to determine whether the insights from laboratory results hold true in a more complex system. We describe how laboratory results can be used to inform field studies and predict the likelihood of success of natural enemy releases. We use the example of the natural enemy-Bactrocera dorsalis system in Africa. We show that behavioural ecology offers a powerful tool to understand species interactions on the basis of individual decisions. We further discuss how these findings can be exploited in an agricultural context to improve the control effort. Finally, we describe the need for comprehensive field studies based on the behavioural observations made in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adandonon A, Vayssieres JF, Sinzogan A, Van Mele P (2009) Density of pheromone sources of the weaver ant Oecophylla longinoda affects oviposition behaviour and damage by mango fruit flies (Diptera: Tephritidae). Int J Pest Man 55:285–292. doi:10.1080/09670870902878418

    Article  Google Scholar 

  • Beddington JR, Free CA, Lawton JH (1978) Characteristics of successful natural enemies in models of biological control of insect pests. Nature 273:513–519

    Article  CAS  PubMed  Google Scholar 

  • Bess HA, Haramoto FH (1972) Biological control of pamakani, Eupatorium adenophorum, in Hawaii by a tephritid gall fly, Procecidochares utilis. 3. Status of weed, fly and parasites of fly in 1966–71 versus 1950–57. Proc Hawaiian Entomol Soc 21:165–178

    Google Scholar 

  • Caltagirone LE (1981) Landmark examples in classical biological control. Ann Rev Entomol 26:213–232

    Article  Google Scholar 

  • Chown SL, Slabber S, McGeoch MA, Janion C, Leinaas HP (2007) Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc Roy Soc Ser B 274:2531–2537. doi:10.2307/25249362

    Article  Google Scholar 

  • Christenson LD, Foote RH (1960) Biology of fruit flies. Ann Rev Entomol 5:171–192

    Article  Google Scholar 

  • Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species, and if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431. doi:10.1111/j.1461-0248.2011.01596.x

    Article  PubMed  Google Scholar 

  • De Clercq P, Mason P, Babendreier D (2011) Benefits and risks of exotic biological control agents. BioControl 56:681–698. doi:10.1007/s10526-011-9372-8

    Article  Google Scholar 

  • Dejean A (1990) Circadian-rhythm of Oecophylla longinoda in relation to territoriality and predatory behaviour. Phys Entomol 15:393–403

    Article  Google Scholar 

  • Doak DF, Mills LS (1994) A useful role for theory in conservation. Ecology 75:615–626. doi:10.2307/1941720

    Article  Google Scholar 

  • Doody JS, Green B, Rhind D, Castellano CM, Sims R, Robinson T (2009) Population-level declines in Australian predators caused by an invasive species. Anim Conserv 12:46–53. doi:10.1111/j.1469-1795.2008.00219.x

    Article  Google Scholar 

  • Drew RAI, Tsuruta K, White IM (2005) A new species of pest fruit fly (Diptera: Tephritidae: Dacinae) from Sri Lanka and Africa. Afr Entomol 13:149–154

    Google Scholar 

  • Duan JJ, Messing RH (1997) Biological control of fruit flies in Hawaii: factors affecting non-target risk analysis. Agric Hum Values 14:227–236

    Article  Google Scholar 

  • Duan JJ, Messing RH, Dukas R (2000) Host selection of Diachasmimorpha tryoni (Hymenoptera: Braconidae): comparative response to fruit-infesting and gall-forming tephritid flies. Env Entomol 29:838–845

    Article  Google Scholar 

  • Duyck PF, David P, Quilici S (2004) A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol Entomol 29:511–520. doi:10.1111/j.0307-6946.2004.00638.x

    Article  Google Scholar 

  • Fagan WF, Lewis MA, Neubert MG, Van Den Driessche P (2002) Invasion theory and biological control. Ecol Lett 5:148–157. doi:10.1046/j.1461-0248.2002.0_285.x

    Article  Google Scholar 

  • Fletcher BS (1987) The biology of dacine fruit flies. Ann Rev Entomol 32:115–144. doi:10.1146/annurev.ento.32.1.115

    Article  Google Scholar 

  • Gonthier DJ (2012) Do herbivores eavesdrop on ant chemical communication to avoid predation? Plos One 7:e28703. doi:10.1371/journal.pone.0028703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths AD, McKay JL (2007) Cane toads reduce the abundance and site occupancy of Merten’s water monitor (Varanus mertensi). Wildl Res 34:609–615. doi:10.1071/wr07024

    Article  Google Scholar 

  • Hamilton WD (1971) Geometry for selfish herd. J Theor Biol 31:295–311. doi:10.1016/0022-5193(71)90189-5

    Article  CAS  PubMed  Google Scholar 

  • Haramoto FH, Bess HA (1970) Recent studies on the abundance of the oriental and mediterranean fruit flies and the status of their parasites. Proc Hawaiian Entomol Soc 20:551–566

    Google Scholar 

  • Hastings A (2000) Parasitoid spread: lessons for and from invasion biology. In: Ives AR, Hochberg ME (eds) Parasitoid population biology. Princeton University Press, Princeton, pp 70–82

    Google Scholar 

  • Heimpel GE, Asplen MK (2011) A ‘Goldilocks’ hypothesis for dispersal of biological control agents. BioControl 56:441–450

    Article  Google Scholar 

  • Hoffmeister TS, Babendreier D, Wajnberg É (2006) Statistical tools to improve the quality of experiments and data analysis for assessing non-target effect. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CAB International, Wallingford, pp 222–240

    Chapter  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin

    Book  Google Scholar 

  • Höller C, Micha SG, Schulz S, Francke W, Pickett JA (1994) Enemy-induced dispersal in a parasitic wasp. Experientia 50:182–185

    Article  Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and structure of prey communities. Theor Pop Biol 12:197–229. doi:10.1016/0040-5809(77)90042-9

    Article  CAS  Google Scholar 

  • Howarth FG (1983) Classical biocontrol: panacea or Pandora’s box. Proc Hawaiian Entomol Soc 24:239–244

    Google Scholar 

  • Howarth FG (1991) Environmental impacts of classical biological control. Ann Rev Entomol 36:485–509. doi:10.1146/annurev.en.36.010191.002413

    Article  Google Scholar 

  • Huang HT, Yang P (1987) The ancient cultured citrus ant. Bioscience 37:665–671. doi:10.2307/1310713

    Article  Google Scholar 

  • Jervis MA (ed) (2005) Insects as natural enemies: a practical perspective. Springer, Dordrecht

    Google Scholar 

  • Kareiva P (1996) Special feature: contributions of ecology to biological control. Ecology 77:1963–1964. doi:10.2307/2265692

    Article  Google Scholar 

  • Kausrud K, Økland B, Skarpaas O, Gregoire JC, Erbilgin N, Stenseth NC (2012) Population dynamics in changing environments: the case of an eruptive forest pest species. Biol Rev 87:34–51. doi:10.1111/j.1469-185X.2011.00183.x

    Article  PubMed  Google Scholar 

  • Kenis M, Auger-Rozenberg M-A, Roques A, Timms L, Péré C, Cock MJW, Settele J, Augustin S, Lopez-Vaamonde C (2009) Ecological effects of invasive alien insects. In: Langor D, Sweeney J (eds) Ecological impacts of non-native invertebrates and fungi on terrestrial ecosystems. Springer, Dordrecht, pp 21–45. doi:10.1007/978-1-4020-9680-8_3

    Chapter  Google Scholar 

  • Kidd NA, Jervis MA (2005) Population dynamics. In: Insects as natural enemies: a practical perspective. Springer, Dordrecht, pp 435–523

    Chapter  Google Scholar 

  • Kunert G, Otto S, Röse USR, Gershenzon J, Weisser WW (2005) Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecol Lett 8:596–603. doi:10.1111/j.1461-0248.2005.00754.x

    Article  Google Scholar 

  • Lampo M, De Leo GA (1998) The invasion ecology of the toad bufo marinus: from South America to Australia. Ecol Appl 8:388–396. doi:10.2307/2641079

    Google Scholar 

  • Lessells CM (1985) Parasitoid foraging: should parasitism be density dependent? JAE 54:27–41

    Google Scholar 

  • Lima SL (1998) Nonlethal effects in the ecology of predator-prey interactions – What are the ecological effects of anti-predator decision-making? Bioscience 48:25–34. doi:10.2307/1313225

    Article  Google Scholar 

  • Louda SM, Pemberton RW, Johnson MT, Follett PA (2003) Nontarget effects – The Achilles’ Heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Ann Rev Entomol 48:365–396. doi:10.1146/annurev.ento.48.060402.102800

    Article  CAS  Google Scholar 

  • Mashanova A, Gange AC, Jansen VAA (2008) Density-dependent dispersal may explain the mid-season crash in some aphid populations. Pop Ecol 50:285–292. doi:10.1007/s10144-008-0087-3

    Article  Google Scholar 

  • May RM, Hassell MP (1988) Population dynamics and biological control. Philos Trans R Soc B 318:129–169

    Article  Google Scholar 

  • Messelink GJ, Sabelis MW, Janssen A (2012) Generalist predators, food web complexities and biological pest control. In: Sonia S (ed) Greenhouse crops, integrated pest management and pest control – current and future tactics. InTech, pp 191–214. doi:10.5772/30835

    Google Scholar 

  • Messing RH, Wright MG (2006) Biological control of invasive species: solution or pollution? Front Ecol Environ 4:132–140. doi:10.2307/3868683

    Article  Google Scholar 

  • Migani V, Ekesi S, Hoffmeister TS (2014) Physiology vs. environment: what drives oviposition decisions in mango fruit flies (Bactrocera invadens and Ceratitis cosyra)? J Appl Entomol 138:395–402. doi:10.1111/jen.12038

    Article  Google Scholar 

  • Mohamed SA, Wharton RA, von Merey G, Schulthess F (2006) Acceptance and suitability of different host stages of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) and seven other tephritid fruit fly species to Tetrastichus giffardii Silvestri (Hymenoptera: Eulophidae). Biol Contr 39:262–271. doi:10.1016/j.biocontrol.2006.08.016

    Article  Google Scholar 

  • Murdoch WW (1994) Population regulation in theory and practice. Ecology 75:271–287. doi:10.2307/1939533

    Article  Google Scholar 

  • Murdoch WW, Chesson J, Chesson PL (1985) Biological control in theory and practice. Am Nat 125:344–366. doi:10.1086/284347

    Article  Google Scholar 

  • Papaj DR, Roitberg BD, Opp SB (1989) Serial effects of host infestation on egg allocation by the mediterranean fruit fly: a rule of thumb and its functional significance. J Anim Ecol 58:955–970. doi:10.2307/5135

    Article  Google Scholar 

  • Peacor SD, Werner EE (1997) Trait-mediated indirect interactions in a simple aquatic food web. Ecology 78:1146–1156. doi:10.2307/2265865

    Article  Google Scholar 

  • Pemberton C (1964) Highlights in the history of entomology in Hawaii 1778–1963. Pac Insects 6:689–729

    Google Scholar 

  • Poethke HJ, Hovestadt T (2002) Evolution of density- and patch-size-dependent dispersal rates. Proc Roy Soc Ser B 269:637–645. doi:10.1098/rspb.2001.1936

    Article  Google Scholar 

  • Polis GA, Holt RD (1992) Intraguild predation – The dynamics of complex trophic interactions. TREE 7:151–154. doi:10.1016/0169-5347(92)90208-s

    CAS  PubMed  Google Scholar 

  • Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86:501–509. doi:10.1890/04-0719

    Article  Google Scholar 

  • Press JW, Flaherty BR, Arbogast RT (1974) Interactions among Plodia interpunctella, Bracon hebetor, and Xylocoris flavipes. Environ Entomol 3:183–184. doi:10.1093/ee/3.1.183

    Article  Google Scholar 

  • Purcell MF (1998) Contribution of biological control to integrated pest management of tephritid fruit flies in the tropics and subtropics. Int Pest Man Rev 3:63–83. doi:10.1023/a:1009647429498

    Article  Google Scholar 

  • Quimio GM, Walter GH (2001) Host preference and host suitability in an egg-pupal fruit fly parasitoid, Fopius arisanus (Sonan) (Hym., Braconidae). J Appl Entomol 125:135–140. doi:10.1046/j.1439-0418.2001.00514.x

    Article  Google Scholar 

  • Roitberg BD (2000) Threats, flies, and protocol gaps: can evolutionary ecology save biological control? In: Hochberg ME, Ives AR (eds) Parasitoid population biology. Princeton University Press, Princeton, pp 254–265

    Google Scholar 

  • Roitberg BD, Zimmermann K, Hoffmeister TS (2010) Dynamic response to danger in a parasitoid wasp. Behav Ecol Sociobiol 64:627–637. doi:10.1007/s00265-009-0880-9

    Article  Google Scholar 

  • Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological-control agents: theory and evidence. Biol Contr 5:303–335. doi:10.1006/bcon.1995.1038

    Article  Google Scholar 

  • Rousse P, Harris EJ, Quilici S (2005) Fopius arisanus, an egg–pupal parasitoid of Tephritidae. Overview. Biocontrol News Inf 26:59N–69N

    Google Scholar 

  • Schmidt MH, Lauer A, Purtauf T, Thies C, Schaefer M, Tscharntke T (2003) Relative importance of predators and parasitoids for cereal aphid control. Proc R Soc Lond B 270:1905–1909. doi:10.1098/rspb.2003.2469

    Article  Google Scholar 

  • Schutze MK, Aketarawong N, Amornsak W, Armstrong KF, Augustinos AA, Barr N, Bo W, Bourtzis K, Boykin LM, Caceres C, Cameron SL, Chapman TA, Chinvinijkul S, Chomic A, De Meyer M, Drosopoulou E, Englezou A, Ekesi S, Gariou-Papalexiou A, Geib SM, Hailstones D, Hasanuzzaman M, Haymer D, Hee AKW, Hendrichs J, Jessup A, Ji QG, Khamis FM, Krosch MN, Leblanc L, Mahmood K, Malacrida AR, Mavragani-Tsipidou P, Mwatawala M, Nishida R, Ono H, Reyes J, Rubinoff D, San Jose M, Shelly TE, Srikachar S, Tan KH, Thanaphum S, Haq I, Vijaysegaran S, Wee SL, Yesmin F, Zacharopoulou A, Clarke AR (2015) Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural and chemoecological data. Syst Entomol 40:456–471. doi:10.1111/syen.12113

    Article  Google Scholar 

  • Simberloff D (2012) Risks of biological control for conservation purposes. BioControl 57:263–276. doi:10.1007/s10526-011-9392-4

    Article  Google Scholar 

  • Simberloff D, Stiling P (1996) Risks of species introduced for biological control. Biol Conserv 78:185–192. doi: http://dx.doi.org/10.1016/0006-3207(96)00027-4

    Google Scholar 

  • Sinzogan AAC, Van Mele P, Vayssieres JF (2008) Implications of on-farm research for local knowledge related to fruit flies and the weaver ant Oecophylla longinoda in mango production. Int J Pest Manag 54:241–246. doi:10.1080/09670870802014940

    Article  Google Scholar 

  • Snyder WE, Ives AR (2001) Generalist predators disrupt biological control by a specialist parasitoid. Ecology 82:705–716. doi:10.1890/0012-9658(2001)082[0705:gpdbcb]2.0.co;2

    Article  Google Scholar 

  • Snyder WE, Snyder GB, Finke DL, Straub CS (2006) Predator biodiversity strengthens herbivore suppression. Ecol Lett 9:789–796. doi:10.1111/j.1461-0248.2006.00922.x

    Article  PubMed  Google Scholar 

  • Sol D, Maspons J, Vall-llosera M, Bartomeus I, García-Peña GE, Piñol J, Freckleton RP (2012) Unraveling the life history of successful invaders. Science 337:580–583. doi:10.1126/science.1221523

    Article  CAS  PubMed  Google Scholar 

  • Straub CS, Snyder WE (2006) Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology 87:277–282. doi:10.1890/05-0599

    Article  PubMed  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Ann Rev Entomol 47:561–594. doi:10.1146/annurev.ento.47.091201.145240

    Article  CAS  Google Scholar 

  • Traugott M, Bell JR, Raso L, Sint D, Symondson WOC (2012) Generalist predators disrupt parasitoid aphid control by direct and coincidental intraguild predation. Bull Entomol Res 102:239–247. doi:10.1017/s0007485311000551

    Article  CAS  PubMed  Google Scholar 

  • van Driesche RG (2012) The role of biological control in wildlands. BioControl 57:131–137. doi:10.1007/s10526-011-9432-0

    Article  Google Scholar 

  • van Lenteren JC, Bale J, Bigler F, Hokkanen HMT, Loomans AJM (2006a) Assessing risks of releasing exotic biological control agents of arthropod pests. Ann Rev Entomol 51:609–634. doi:10.1146/annurev.ento.51.110104.151129

    Article  Google Scholar 

  • van Lenteren JC, Cock MJW, Hoffmeister TS, Sands DPA (2006b) Host specificity in arthropod biological control, methods for testing and interpretation of the data. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CAB International, Wallingford, pp 38–63

    Chapter  Google Scholar 

  • van Mele P, Vayssieres JF, Van Tellingen E, Vrolijks J (2007) Effects of an African weaver ant, Oecophylla longinoda, in controlling mango fruit flies (Diptera: Tephritidae) in Benin. J Econ Entomol 100:695–701. doi:10.1603/0022-0493(2007)100[695:eoaawa]2.0.co;2

    Article  PubMed  Google Scholar 

  • van Mele P, Vayssieres JF, Adandonon A, Sinzogan A (2009) Ant cues affect the oviposition behaviour of fruit flies (Diptera: Tephritidae) in Africa. Phys Entomol 34:256–261. doi:10.1111/j.1365-3032.2009.00685.x

    Article  Google Scholar 

  • Vance-Chalcraft HD, Rosenheim JA, Vonesh JR, Osenberg CW, Sih A (2007) The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology 88:2689–2696. doi:10.1890/06-1869.1

    Article  PubMed  Google Scholar 

  • Vargas RI, Leblanc L, Putoa R, Eitam A (2007) Impact of introduction of Bactrocera dorsalis (Diptera: Tephritidae) and classical biological control releases of Fopius arisanus (Hymenoptera: Braconidae) on economically important fruit flies in French Polynesia. J Econ Entomol 100:670–679. doi:10.1603/0022-0493(2007)100[670:ioiobd]2.0.co;2

    Article  PubMed  Google Scholar 

  • Vargas RI, Leblanc L, Putoa R, Piñero JC (2012) Population dynamics of three Bactrocera spp. fruit flies (Diptera: Tephritidae) and two introduced natural enemies, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), after an invasion by Bactrocera dorsalis (Hendel) in Tahiti. Biol Control 60:199–206. doi:10.1016/j.biocontrol.2011.10.012

    Article  Google Scholar 

  • Vayssieres JF, Wharton R, Adandonon A, Sinzogan A (2011) Preliminary inventory of parasitoids associated with fruit flies in mangoes, guavas, cashew pepper and wild fruit crops in Benin. BioControl 56:35–43. doi:10.1007/s10526-010-9313-y

    Article  Google Scholar 

  • Völkl W (2001) Parasitoid learning during interactions with ants: how to deal with an aggressive antagonist. Behav Ecol Sociobiol 49:135–144. doi:10.1007/s002650000285

    Article  Google Scholar 

  • Völkl W, Kroupa AS (1997) Effects of adult mortality risks on parasitoid foraging tactics. Anim Behav 54:349–359. doi:10.1006/anbe.1996.0462

    Article  Google Scholar 

  • Waage JK, Hassell MP (1982) Parasitoids as biological-control agents – a fundamental approach. Parasitology 84:241–268

    Article  Google Scholar 

  • Wang XG, Messing RH (2002) Newly imported larval parasitoids pose minimal competitive risk to extant egg-larval parasitoid of tephritid fruit flies in Hawaii. Bull Entomol Res 92:423–429. doi:10.1079/ber2002181

    Article  CAS  PubMed  Google Scholar 

  • Wang XG, Messing RH (2003) Foraging behavior and patch time allocation by Fopius arisanus (Hymenoptera: Braconidae), an egg-larval parasitoid of tephritid fruit flies. J Insect Behav 16:593–612. doi:10.1023/B:Joir.0000007698.01714.56

    Article  Google Scholar 

  • Wang XG, Messing RH, Bautista RC (2003) Competitive superiority of early acting species: a case study of opiine fruit fly parasitoids. Biocontrol Sci Technol 13:391–402. doi:10.1080/0958315031000104514

    Article  CAS  Google Scholar 

  • Weisser WW (2003) Additive effects of pea aphid natural enemies despite intraguild predation. In: Soares AO, Ventura MA, Garcia V, Hemptinne J-L (eds) 8th international symposium on ecology of aphidophaga: biology, ecology and behaviour of aphidophagous insects, Ponta Delgada, 2003. University of the Azores, Azores, pp 11–15

    Google Scholar 

Download references

Acknowledgements

The chapter has benefited greatly from the intellectual support of all team members of the African Fruit Fly Programme at icipe, Nairobi and the Population and Evolutionary Ecology Group at the University of Bremen. This study was financially supported by the BMZ (project no.: 06.7860.7-00100 and 06.7860.9-00100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Merkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Merkel, K., Migani, V., Ekesi, S., Hoffmeister, T.S. (2016). From Behavioural Studies to Field Application: Improving Biological Control Strategies by Integrating Laboratory Results into Field Experiments. In: Ekesi, S., Mohamed, S., De Meyer, M. (eds) Fruit Fly Research and Development in Africa - Towards a Sustainable Management Strategy to Improve Horticulture. Springer, Cham. https://doi.org/10.1007/978-3-319-43226-7_17

Download citation

Publish with us

Policies and ethics