Skip to main content

Chemotherapy and Multidisciplinary Approaches to Pediatric Sarcomas

  • Chapter
  • First Online:
Sarcoma

Abstract

Collectively, sarcomas represent 12% of cancers occurring in individuals between birth and 19 years of age; 60% are soft tissue sarcomas and 40% are bone sarcomas. Soft tissue sarcomas may be broadly divided into two groups: rhabdomyosarcoma and non-rhabdomyosarcoma soft tissue sarcomas. The two most common malignant primary bone sarcomas are osteosarcoma and Ewing sarcoma. The treatment of sarcomas has been a challenge in the field of pediatric oncology. Despite the conduct of clinical trials that have introduced new agents into the standard backbones of therapy, there has not been a significant improvement in the overall survival of metastatic sarcomas in the past several decades. This chapter provides an overview of the workup and multidisciplinary treatment of the common pediatric bone and soft tissue sarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Howlader N, et al. SEER cancer statistics review, 1975–2011. 2014.

    Google Scholar 

  2. Smith MA, et al. Declining childhood and adolescent cancer mortality. Cancer. 2014;120(16):2497–506.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fletcher CDM, et al. WHO classification of tumours of soft tissue and bone. In:Pathology and genetics of tumours of soft tissue and bone. IARC Press: Lyon; 2013.

    Google Scholar 

  4. Bielack SS, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20(3):776–90.

    Article  PubMed  Google Scholar 

  5. Goorin AM, et al. Phase II/III trial of etoposide and high-dose ifosfamide in newly diagnosed metastatic osteosarcoma: a pediatric oncology group trial. J Clin Oncol. 2002;20(2):426–33.

    Article  CAS  PubMed  Google Scholar 

  6. Bacci G, et al. Neoadjuvant chemotherapy for osteosarcoma of the extremities with metastases at presentation: recent experience at the Rizzoli Institute in 57 patients treated with cisplatin, doxorubicin, and a high dose of methotrexate and ifosfamide. Ann Oncol. 2003;14(7):1126–34.

    Article  CAS  PubMed  Google Scholar 

  7. Panicek DM, et al. CT and MR imaging in the local staging of primary malignant musculoskeletal neoplasms: report of the radiology diagnostic oncology group. Radiology. 1997;202(1):237–46.

    Article  CAS  PubMed  Google Scholar 

  8. Meyer JS, et al. Imaging guidelines for children with Ewing sarcoma and osteosarcoma: a report from the Children’s Oncology Group bone tumor committee. Pediatr Blood Cancer. 2008;51(2):163–70.

    Article  PubMed  Google Scholar 

  9. Volker T, et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol. 2007;25(34):5435–41.

    Article  PubMed  Google Scholar 

  10. Kaste SC. Imaging pediatric bone sarcomas. Radiol Clin N Am. 2011;49(4):749–65, vi–vii.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Uhl M, et al. Evaluation of tumour necrosis during chemotherapy with diffusion-weighted MR imaging: preliminary results in osteosarcomas. Pediatr Radiol. 2006;36(12):1306–11.

    Article  PubMed  Google Scholar 

  12. Hamada K, et al. Evaluation of chemotherapy response in osteosarcoma with FDG-PET. Ann Nucl Med. 2009;23(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  13. Rahn III DA, et al. Clinical outcomes of palliative radiation therapy for children. Pract Radiat Oncol. 2015;5(3):183–7.

    Article  PubMed  Google Scholar 

  14. Dome JS, Schwartz CL. Osteosarcoma. Cancer Treat Res. 1997;92:215–51.

    Article  CAS  PubMed  Google Scholar 

  15. Taylor WF, et al. Trends and variability in survival among patients with osteosarcoma: a 7-year update. Mayo Clin Proc. 1985;60(2):91–104.

    Article  CAS  PubMed  Google Scholar 

  16. Link MP, et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med. 1986;314(25):1600–6.

    Article  CAS  PubMed  Google Scholar 

  17. Eilber F, et al. Adjuvant chemotherapy for osteosarcoma: a randomized prospective trial. J Clin Oncol. 1987;5(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  18. Rosen G, et al. Chemotherapy, en bloc resection, and prosthetic bone replacement in the treatment of osteogenic sarcoma. Cancer. 1976;37(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  19. Meyers PA, et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol. 2005;23(9):2004–11.

    Article  CAS  PubMed  Google Scholar 

  20. Marina N, et al. MAPIE vs. MAP as postoperative chemotherapy in patients with a poor response to preoperative chemotherapy for newly-diagnosed osteosarcoma: results from EURAMOS-1. In: Connective Tissue Oncology Society meeting 2014, Berlin, Germany.

    Google Scholar 

  21. Meyers PA, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol. 2008;26(4):633–8.

    Article  CAS  PubMed  Google Scholar 

  22. Ferrari S, et al. Neoadjuvant chemotherapy with methotrexate, cisplatin, and doxorubicin with or without ifosfamide in nonmetastatic osteosarcoma of the extremity: an Italian sarcoma group trial ISG/OS-1. J Clin Oncol. 2012;30(17):2112–8.

    Article  CAS  PubMed  Google Scholar 

  23. Kager L, et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant cooperative Osteosarcoma Study Group protocols. J Clin Oncol. 2003;21(10):2011–8.

    Article  PubMed  Google Scholar 

  24. Chou AJ, et al. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Cancer. 2009;115(22):5339–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bielack SS, et al. Methotrexate, doxorubicin, and cisplatin (MAP) plus maintenance pegylated interferon Alfa-2b versus map alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS-1 good response randomized controlled trial. J Clin Oncol. 2015;33(20):2279–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Isakoff MS, et al. Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. 2015;33(27):3029–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zwerdling T, et al. Phase II investigation of docetaxel in pediatric patients with recurrent solid tumors: a report from the Children’s Oncology Group. Cancer. 2006;106(8):1821–8.

    Article  CAS  PubMed  Google Scholar 

  28. Navid F, et al. Combination of gemcitabine and docetaxel in the treatment of children and young adults with refractory bone sarcoma. Cancer. 2008;113(2):419–25.

    Article  CAS  PubMed  Google Scholar 

  29. Gosiengfiao Y, et al. Gemcitabine with or without docetaxel and resection for recurrent osteosarcoma: the experience at Children’s Memorial Hospital. J Pediatr Hematol Oncol. 2012;34(2):e63–5.

    Article  CAS  PubMed  Google Scholar 

  30. Song BS, et al. Gemcitabine and docetaxel for the treatment of children and adolescents with recurrent or refractory osteosarcoma: Korea Cancer Center Hospital experience. Pediatr Blood Cancer. 2014;61(8):1376–81.

    Article  CAS  PubMed  Google Scholar 

  31. Ebb D, et al. Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(20):2545–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arndt CA, et al. Inhaled granulocyte-macrophage colony stimulating factor for first pulmonary recurrence of osteosarcoma: effects on disease-free survival and immunomodulation. A report from the Children’s Oncology Group. Clin Cancer Res. 2010;16(15):4024–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goldsby RE, et al. Feasibility and dose discovery analysis of zoledronic acid with concurrent chemotherapy in the treatment of newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Eur J Cancer. 2013;49(10):2384–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chi SN, et al. The patterns of relapse in osteosarcoma: the Memorial Sloan-Kettering experience. Pediatr Blood Cancer. 2004;42(1):46–51.

    Article  PubMed  Google Scholar 

  35. Kempf-Bielack B, et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Co-operative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005;23(3):559–68.

    Article  PubMed  Google Scholar 

  36. Chou AJ, et al. Treatment of osteosarcoma at first recurrence after contemporary therapy: the Memorial Sloan-Kettering cancer center experience. Cancer. 2005;104(10):2214–21.

    Article  PubMed  Google Scholar 

  37. Bielack SS, et al. Second and subsequent recurrences of osteosarcoma: presentation, treatment, and outcomes of 249 consecutive Cooperative Osteosarcoma Study Group patients. J Clin Oncol. 2009;27(4):557–65.

    Article  PubMed  Google Scholar 

  38. Bernstein M, et al. Ewing’s sarcoma family of tumors: current management. Oncologist. 2006;11(5):503–19.

    Article  CAS  PubMed  Google Scholar 

  39. Meyers PA. Malignant bone tumors in children: Ewing’s sarcoma. Hematol Oncol Clin North Am. 1987;1(4):667–73.

    CAS  PubMed  Google Scholar 

  40. Gaspar N, et al. Ewing sarcoma: current management and future approaches through collaboration. J Clin Oncol. 2015;33(27).

    Google Scholar 

  41. Meyers PA, Levy AS. Ewing’s sarcoma. Curr Treat Options in Oncol. 2000;1(3):247–57.

    Article  CAS  Google Scholar 

  42. Pizzo P, Poplack D. Principles and practice of pediatric oncology. 6th ed. Philadelphia: Lippincott, Williams and Wilkins; 2010.

    Google Scholar 

  43. Guimaraes JB, et al. The importance of PET/CT in the evaluation of patients with Ewing tumors. Radiol Bras. 2015;48(3):175–80.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Quartuccio N, et al. Pediatric bone sarcoma: diagnostic performance of (1, 8)F-FDG PET/CT versus conventional imaging for initial staging and follow-up. AJR Am J Roentgenol. 2015;204(1):153–60.

    Article  PubMed  Google Scholar 

  45. Raciborska A, et al. Response to chemotherapy estimates by FDG PET is an important prognostic factor in patients with Ewing sarcoma. Clin Transl Oncol. 2016;18(2):189–95.

    Article  CAS  PubMed  Google Scholar 

  46. Hawkins DS, et al. [18F] Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol. 2005;23(34):8828–34.

    Article  PubMed  Google Scholar 

  47. Zang J, et al. Ewing’s sarcoma of bone: treatment results and prognostic factors. Zhonghua Wai Ke Za Zhi. 2010;48(12):896–9.

    PubMed  Google Scholar 

  48. Karski EE, et al. Identification of discrete prognostic groups in Ewing sarcoma. Pediatr Blood Cancer. 2016;63(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  49. Bacci G, et al. Prognostic factors in nonmetastatic Ewing’s sarcoma of bone treated with adjuvant chemotherapy: analysis of 359 patients at the Istituto Ortopedico Rizzoli. J Clin Oncol. 2000;18(1):4–11.

    Article  CAS  PubMed  Google Scholar 

  50. Cotterill SJ, et al. Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol. 2000;18(17):3108–14.

    Article  CAS  PubMed  Google Scholar 

  51. La TH, et al. Radiation therapy for Ewing’s sarcoma: results from Memorial Sloan-Kettering in the modern era. Int J Radiat Oncol Biol Phys. 2006;64(2):544–50.

    Article  PubMed  Google Scholar 

  52. Lopez JL, et al. Role of radiation therapy in the multidisciplinary management of Ewing’s sarcoma of bone in pediatric patients: an effective treatment for local control. Rep Pract Oncol Radiother. 2011;16(3):103–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Perez CA, et al. Radiation therapy in the multimodal management of Ewing’s sarcoma of bone: report of the Intergroup Ewing’s Sarcoma Study. Natl Cancer Inst Monogr. 1981;56:263–71.

    Google Scholar 

  54. Craft AW, et al. Long-term results from the first UKCCSG Ewing’s Tumour Study (ET-1). United Kingdom Children’s Cancer Study Group (UKCCSG) and the Medical Research Council Bone Sarcoma Working Party. Eur J Cancer. 1997;33(7):1061–9.

    Article  CAS  PubMed  Google Scholar 

  55. Paulussen M, et al. Localized Ewing tumor of bone: final results of the cooperative Ewing’s Sarcoma Study CESS 86. J Clin Oncol. 2001;19(6):1818–29.

    Article  CAS  PubMed  Google Scholar 

  56. Grier HE, et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med. 2003;348(8):694–701.

    Article  CAS  PubMed  Google Scholar 

  57. Womer RB, et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(33):4148–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hartmann O, et al. [Role of high-dose chemotherapy followed by bone marrow autograft in the treatment of metastatic Ewing’s sarcoma in children]. Bull Cancer. 1990;77(2):181–7.

    Google Scholar 

  59. McTiernan A, et al. High dose chemotherapy with bone marrow or peripheral stem cell rescue is an effective treatment option for patients with relapsed or progressive Ewing’s sarcoma family of tumours. Ann Oncol. 2006;17(8):1301–5.

    Article  CAS  PubMed  Google Scholar 

  60. Meyers PA, et al. High-dose melphalan, etoposide, total-body irradiation, and autologous stem-cell reconstitution as consolidation therapy for high-risk Ewing’s sarcoma does not improve prognosis. J Clin Oncol. 2001;19(11):2812–20.

    Article  CAS  PubMed  Google Scholar 

  61. Ladenstein R, et al. Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial. J Clin Oncol. 2010;28(20):3284–91.

    Article  CAS  PubMed  Google Scholar 

  62. Tolcher AW, et al. Phase I, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1. J Clin Oncol. 2009;27(34):5800–7.

    Article  CAS  PubMed  Google Scholar 

  63. Tap WD, et al. Phase II study of ganitumab, a fully human anti-type-1 insulin-like growth factor receptor antibody, in patients with metastatic Ewing family tumors or desmoplastic small round cell tumors. J Clin Oncol. 2012;30(15):1849–56.

    Article  CAS  PubMed  Google Scholar 

  64. Ognjanovic S, et al. Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975–2005. Cancer. 2009;115(18):4218–26.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li FP, Fraumeni Jr JF. Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J Natl Cancer Inst. 1969;43(6):1365–73.

    CAS  PubMed  Google Scholar 

  66. Felix CA, et al. Frequency and diversity of p53 mutations in childhood rhabdomyosarcoma. Cancer Res. 1992;52(8):2243–7.

    CAS  PubMed  Google Scholar 

  67. Gripp KW. Tumor predisposition in Costello syndrome. Am J Med Genet C Semin Med Genet. 2005;137C(1):72–7.

    Article  PubMed  Google Scholar 

  68. Doros L, et al. DICER1 mutations in embryonal rhabdomyosarcomas from children with and without familial PPB-tumor predisposition syndrome. Pediatr Blood Cancer. 2012;59(3):558–60.

    Article  PubMed  Google Scholar 

  69. Barr FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene. 2001;20(40):5736–46.

    Article  CAS  PubMed  Google Scholar 

  70. Koufos A, et al. Loss of heterozygosity in three embryonal tumours suggests a common pathogenetic mechanism. Nature. 1985;316(6026):330–4.

    Article  CAS  PubMed  Google Scholar 

  71. Shern JF, et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014;4(2):216–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Missiaglia E, et al. PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol. 2012;30(14):1670–7.

    Article  PubMed  Google Scholar 

  73. Sorensen PH, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2002;20(11):2672–9.

    Article  CAS  PubMed  Google Scholar 

  74. Mosquera JM, et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer. 2013;52(6):538–50.

    Article  CAS  PubMed  Google Scholar 

  75. Gosiengfiao Y, Reichek J, Walterhouse D. What is new in rhabdomyosarcoma management in children? Paediatr Drugs. 2012;14(6):389–400.

    PubMed  Google Scholar 

  76. Raney RB, et al. The Intergroup Rhabdomyosarcoma Study Group (IRSG): major lessons from the IRS-I through IRS-IV studies as background for the current IRS-V treatment protocols. Sarcoma. 2001;5(1):9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lawrence Jr W, et al. Pretreatment TNM staging of childhood rhabdomyosarcoma: a report of the Intergroup Rhabdomyosarcoma Study Group. Children’s Cancer Study Group. Pediatric Oncology Group. Cancer. 1997;80(6):1165–70.

    Article  PubMed  Google Scholar 

  78. Malempati S, Hawkins DS. Rhabdomyosarcoma: review of the Children’s Oncology Group (COG) Soft-Tissue Sarcoma Committee experience and rationale for current COG studies. Pediatr Blood Cancer. 2012;59(1):5–10.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cecchetto G, et al. Biopsy or debulking surgery as initial surgery for locally advanced rhabdomyosarcomas in children? The experience of the Italian Cooperative Group studies. Cancer. 2007;110(11):2561–7.

    Article  PubMed  Google Scholar 

  80. Hays DM, et al. Primary reexcision for patients with ‘microscopic residual’ tumor following initial excision of sarcomas of trunk and extremity sites. J Pediatr Surg. 1989;24(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  81. Rodeberg DA, et al. Delayed primary excision with subsequent modification of radiotherapy dose for intermediate-risk rhabdomyosarcoma: a report from the Children’s Oncology Group Soft Tissue Sarcoma Committee. Int J Cancer. 2015;137(1):204–11.

    Article  CAS  PubMed  Google Scholar 

  82. Rodeberg DA, et al. Prognostic significance of tumor response at the end of therapy in group III rhabdomyosarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2009;27(22):3705–11.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Raney B, et al. Impact of tumor viability at second-look procedures performed before completing treatment on the intergroup rhabdomyosarcoma study group protocol IRS-IV, 1991-1997: a report from the Children’s Oncology Group. J Pediatr Surg. 2010;45(11):2160–8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wiener ES, et al. Controversies in the management of paratesticular rhabdomyosarcoma: is staging retroperitoneal lymph node dissection necessary for adolescents with resected paratesticular rhabdomyosarcoma? Semin Pediatr Surg. 2001;10(3):146–52.

    Article  CAS  PubMed  Google Scholar 

  85. Neville HL, et al. Preoperative staging, prognostic factors, and outcome for extremity rhabdomyosarcoma: a preliminary report from the Intergroup Rhabdomyosarcoma Study IV (1991–1997). J Pediatr Surg. 2000;35(2):317–21.

    Article  CAS  PubMed  Google Scholar 

  86. De Corti F, et al. Does surgery have a role in the treatment of local relapses of non-metastatic rhabdomyosarcoma? Pediatr Blood Cancer. 2011;57(7):1261–5.

    Article  PubMed  Google Scholar 

  87. Crist W, et al. The third intergroup rhabdomyosarcoma study. J Clin Oncol. 1995;13(3):610–30.

    Article  CAS  PubMed  Google Scholar 

  88. Crist WM, et al. Intergroup rhabdomyosarcoma study-IV: results for patients with nonmetastatic disease. J Clin Oncol. 2001;19(12):3091–102.

    Article  CAS  PubMed  Google Scholar 

  89. Stevens MC, et al. Treatment of nonmetastatic rhabdomyosarcoma in childhood and adolescence: third study of the International Society of Paediatric Oncology–SIOP Malignant Mesenchymal Tumor 89. J Clin Oncol. 2005;23(12):2618–28.

    Article  PubMed  Google Scholar 

  90. Wolden SL, et al. Indications for radiotherapy and chemotherapy after complete resection in rhabdomyosarcoma: a report from the Intergroup Rhabdomyosarcoma Studies I to III. J Clin Oncol. 1999;17(11):3468–75.

    Article  CAS  PubMed  Google Scholar 

  91. Mandell L, et al. Radiocurability of microscopic disease in childhood rhabdomyosarcoma with radiation doses less than 4,000 cGy. J Clin Oncol. 1990;8(9):1536–42.

    Article  CAS  PubMed  Google Scholar 

  92. Breneman J, et al. Local control with reduced-dose radiotherapy for low-risk rhabdomyosarcoma: a report from the Children’s Oncology Group D9602 study. Int J Radiat Oncol Biol Phys. 2012;83(2):720–6.

    Article  PubMed  Google Scholar 

  93. Heyn R, et al. Late effects of therapy in orbital rhabdomyosarcoma in children. A report from the Intergroup Rhabdomyosarcoma Study. Cancer. 1986;57(9):1738–43.

    Article  CAS  PubMed  Google Scholar 

  94. Donaldson SS, et al. Hyperfractionated radiation in children with rhabdomyosarcoma—results of an Intergroup Rhabdomyosarcoma Pilot Study. Int J Radiat Oncol Biol Phys. 1995;32(4):903–11.

    Article  CAS  PubMed  Google Scholar 

  95. Lin C, et al. Effect of radiotherapy techniques (IMRT vs. 3D-CRT) on outcome in patients with intermediate-risk rhabdomyosarcoma enrolled in COG D9803—a report from the Children’s Oncology Group. Int J Radiat Oncol Biol Phys. 2012;82(5):1764–70.

    Article  PubMed  Google Scholar 

  96. McDonald MW, et al. Intensity-modulated radiotherapy with use of cone-down boost for pediatric head-and-neck rhabdomyosarcoma. Int J Radiat Oncol Biol Phys. 2008;72(3):884–91.

    Article  PubMed  Google Scholar 

  97. Cotter SE, et al. Proton radiotherapy for pediatric bladder/prostate rhabdomyosarcoma: clinical outcomes and dosimetry compared to intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2011;81(5):1367–73.

    Article  PubMed  Google Scholar 

  98. Childs SK, et al. Proton radiotherapy for parameningeal rhabdomyosarcoma: clinical outcomes and late effects. Int J Radiat Oncol Biol Phys. 2012;82(2):635–42.

    Article  PubMed  Google Scholar 

  99. Ladra MM, et al. Preliminary results of a phase II trial of proton radiotherapy for pediatric rhabdomyosarcoma. J Clin Oncol. 2014;32(33):3762–70.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Walterhouse DO, et al. Shorter-duration therapy using vincristine, dactinomycin, and lower-dose cyclophosphamide with or without radiotherapy for patients with newly diagnosed low-risk rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. J Clin Oncol. 2014;32(31):3547–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arndt CA, et al. Vincristine, actinomycin, and cyclophosphamide compared with vincristine, actinomycin, and cyclophosphamide alternating with vincristine, topotecan, and cyclophosphamide for intermediate-risk rhabdomyosarcoma: Children’s Oncology Group Study D9803. J Clin Oncol. 2009;27(31):5182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hawkins DS, et al. Vincristine, dactinomycin, cyclophosphamide (VAC) versus VAC/V plus irinotecan (VI) for intermediate risk rhabdomyosarcoma (IRRMS): a report from the Children’s Oncology Group Soft Tissue Sarcoma Committee. J Clin Oncol. 2014;32(5 s):suppl; abstr 10004.

    Google Scholar 

  103. Weigel B, et al. Intensive multiagent therapy, including dosecompressed cycles of ifosfamide/etoposide and vincristine/doxorubicin/cyclophosphamide, irinotecan, and radiation, in patients with high-risk rhabdomyosarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2016;34(2):117–22.

    Google Scholar 

  104. Kim A, et al. Phase 2 trial of sorafenib in children and young adults with refractory solid tumors: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2015;62(9):1562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hashimoto A, et al. Effective treatment of metastatic rhabdomyosarcoma with pazopanib. Gan To Kagaku Ryoho. 2014;41(8):1041–4.

    PubMed  Google Scholar 

  106. Roberts SS, Chou AJ, Cheung NK. Immunotherapy of childhood sarcomas. Front Oncol. 2015;5:181.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Pappo AS, et al. Survival after relapse in children and adolescents with rhabdomyosarcoma: a report from the Intergroup Rhabdomyosarcoma Study Group. J Clin Oncol. 1999;17(11):3487–93.

    Article  CAS  PubMed  Google Scholar 

  108. Chisholm JC, et al. Prognostic factors after relapse in nonmetastatic rhabdomyosarcoma: a nomogram to better define patients who can be salvaged with further therapy. J Clin Oncol. 2011;29(10):1319–25.

    Article  PubMed  Google Scholar 

  109. Doyle LA. Sarcoma classification: an update based on the 2013 World Health Organization classification of tumors of soft tissue and bone. Cancer. 2014;120(12):1763–74.

    Article  PubMed  Google Scholar 

  110. Ferrari A, et al. Non-metastatic unresected paediatric non-rhabdomyosarcoma soft tissue sarcomas: results of a pooled analysis from United States and European groups. Eur J Cancer. 2011;47(5):724–31.

    Article  PubMed  Google Scholar 

  111. Spunt SL, Skapek SX, Coffin CM. Pediatric nonrhabdomyosarcoma soft tissue sarcomas. Oncologist. 2008;13(6):668–78.

    Article  PubMed  Google Scholar 

  112. Rosenberg SA, et al. Prospective randomized evaluation of the role of limb-sparing surgery, radiation therapy, and adjuvant chemoimmunotherapy in the treatment of adult soft-tissue sarcomas. Surgery. 1978;84(1):62–9.

    CAS  PubMed  Google Scholar 

  113. Pisters PW, O’Sullivan B, Maki RG. Evidence-based recommendations for local therapy for soft tissue sarcomas. J Clin Oncol. 2007;25(8):1003–8.

    Article  PubMed  Google Scholar 

  114. Spunt SL, Pappo AS. Childhood nonrhabdomyosarcoma soft tissue sarcomas are not adult-type tumors. J Clin Oncol. 2006;24(12):1958–9; author reply 1959–60.

    Google Scholar 

  115. Spunt SL, et al. Prognostic factors for children and adolescents with surgically resected nonrhabdomyosarcoma soft tissue sarcoma: an analysis of 121 patients treated at St Jude Children’s Research Hospital. J Clin Oncol. 1999;17(12):3697–705.

    Article  CAS  PubMed  Google Scholar 

  116. Ferrari A, et al. Adult-type soft tissue sarcomas in pediatric-age patients: experience at the Istituto Nazionale Tumori in Milan. J Clin Oncol. 2005;23(18):4021–30.

    Article  PubMed  Google Scholar 

  117. Bridge JA. The role of cytogenetics and molecular diagnostics in the diagnosis of soft-tissue tumors. Mod Pathol. 2014;27(Suppl 1):S80–97.

    Article  PubMed  Google Scholar 

  118. Marino-Enriquez A. Advances in the molecular analysis of soft tissue tumors and clinical implications. Surg Pathol Clin. 2015;8(3):525–37.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Waxweiler TV, et al. Non-rhabdomyosarcoma soft tissue sarcomas in children: a surveillance, epidemiology, and end results analysis validating cog risk stratifications. Int J Radiat Oncol Biol Phys. 2015;92(2):339–48.

    Article  PubMed  Google Scholar 

  120. Pappo AS, et al. Metastatic nonrhabdomyosarcomatous soft-tissue sarcomas in children and adolescents: the St. Jude Children’s Research Hospital experience. Med Pediatr Oncol. 1999;33(2):76–82.

    Article  CAS  PubMed  Google Scholar 

  121. Blakely ML, et al. The impact of margin of resection on outcome in pediatric nonrhabdomyosarcoma soft tissue sarcoma. J Pediatr Surg. 1999;34(5):672–5.

    Article  CAS  PubMed  Google Scholar 

  122. Bianchi G, et al. Clear cell sarcoma of soft tissue: a retrospective review and analysis of 31 cases treated at Istituto Ortopedico Rizzoli. Eur J Surg Oncol. 2014;40(5):505–10.

    Article  CAS  PubMed  Google Scholar 

  123. Casanova M, et al. Epithelioid sarcoma in children and adolescents: a report from the Italian Soft Tissue Sarcoma Committee. Cancer. 2006;106(3):708–17.

    Article  PubMed  Google Scholar 

  124. Billingsley KG, et al. Pulmonary metastases from soft tissue sarcoma: analysis of patterns of diseases and postmetastasis survival. Ann Surg. 1999;229(5):602–10; discussion 610–2.

    Google Scholar 

  125. Wolden SL. Radiation therapy for non-rhabdomyosarcoma soft tissue sarcomas in adolescents and young adults. J Pediatr Hematol Oncol. 2005;27(4):212–4.

    Article  PubMed  Google Scholar 

  126. Strander H, Turesson I, Cavallin-Stahl E. A systematic overview of radiation therapy effects in soft tissue sarcomas. Acta Oncol. 2003;42(5-6):516–31.

    Article  PubMed  Google Scholar 

  127. Smith KB, et al. Adjuvant radiotherapy for pediatric and young adult nonrhabdomyosarcoma soft-tissue sarcoma. Int J Radiat Oncol Biol Phys. 2011;81(1):150–7.

    Article  PubMed  Google Scholar 

  128. Paulino AC, Ritchie J, Wen BC. The value of postoperative radiotherapy in childhood nonrhabdomyosarcoma soft tissue sarcoma. Pediatr Blood Cancer. 2004;43(5):587–93.

    Article  PubMed  Google Scholar 

  129. El-Bared N, Wong P, Wang D. Soft tissue sarcoma and radiation therapy advances, impact on toxicity. Curr Treat Options in Oncol. 2015;16(5):19.

    Article  Google Scholar 

  130. Wang D, et al. Significant reduction of late toxicities in patients with extremity sarcoma treated with image-guided radiation therapy to a reduced target volume: results of Radiation Therapy Oncology Group RTOG-0630 Trial. J Clin Oncol. 2015;33(20):2231–8.

    Article  PubMed  PubMed Central  Google Scholar 

  131. O’Sullivan B, et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: A randomised trial. Lancet. 2002;359(9325):2235–41.

    Article  PubMed  Google Scholar 

  132. Pappo AS, et al. Phase II trial of neoadjuvant vincristine, ifosfamide, and doxorubicin with granulocyte colony-stimulating factor support in children and adolescents with advanced-stage nonrhabdomyosarcomatous soft tissue sarcomas: a Pediatric Oncology Group Study. J Clin Oncol. 2005;23(18):4031–8.

    Article  CAS  PubMed  Google Scholar 

  133. Edmonson JH, et al. Randomized comparison of doxorubicin alone versus ifosfamide plus doxorubicin or mitomycin, doxorubicin, and cisplatin against advanced soft tissue sarcomas. J Clin Oncol. 1993;11(7):1269–75.

    Article  CAS  PubMed  Google Scholar 

  134. Pervaiz N, et al. A systematic meta-analysis of randomized controlled trials of adjuvant chemotherapy for localized resectable soft-tissue sarcoma. Cancer. 2008;113(3):573–81.

    Article  PubMed  Google Scholar 

  135. Loh ML, et al. Treatment of infantile fibrosarcoma with chemotherapy and surgery: results from the Dana-Farber Cancer Institute and Children’s Hospital, Boston. J Pediatr Hematol Oncol. 2002;24(9):722–6.

    Article  PubMed  Google Scholar 

  136. Cecchetto G, et al. Fibrosarcoma in pediatric patients: results of the Italian Cooperative Group studies (1979–1995). J Surg Oncol. 2001;78(4):225–31.

    Article  CAS  PubMed  Google Scholar 

  137. Adem C, et al. ETV6 rearrangements in patients with infantile fibrosarcomas and congenital mesoblastic nephromas by fluorescence in situ hybridization. Mod Pathol. 2001;14(12):1246–51.

    Article  CAS  PubMed  Google Scholar 

  138. Orbach D, et al. Infantile fibrosarcoma: management based on the European experience. J Clin Oncol. 2010;28(2):318–23.

    Article  PubMed  Google Scholar 

  139. Sulkowski JP, Raval MV, Browne M. Margin status and multimodal therapy in infantile fibrosarcoma. Pediatr Surg Int. 2013;29(8):771–6.

    Article  PubMed  Google Scholar 

  140. Johansson G, et al. Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors. Mol Cancer Ther. 2008;7(5):1237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Johannessen CM, et al. TORC1 is essential for NF1-associated malignancies. Curr Biol. 2008;18(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  142. Vistica DT, et al. Therapeutic vulnerability of an in vivo model of alveolar soft part sarcoma (ASPS) to antiangiogenic therapy. J Pediatr Hematol Oncol. 2009;31(8):561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hawkins DS, et al. Children’s Oncology Group’s 2013 blueprint for research: soft tissue sarcomas. Pediatr Blood Cancer. 2013;60(6):1001–8.

    Article  PubMed  Google Scholar 

  144. Ray A, Huh WW. Current state-of-the-art systemic therapy for pediatric soft tissue sarcomas. Curr Oncol Rep. 2012;14(4):311–9.

    Article  CAS  PubMed  Google Scholar 

  145. Le Deley MC, et al. SFOP OS94: a randomised trial comparing preoperative high-dose methotrexate plus doxorubicin to high-dose methotrexate plus etoposide and ifosfamide in osteosarcoma patients. Eur J Cancer. 2007;43(4):752–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AeRang Kim M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, A., Dome, J.S., Meany, H.J. (2017). Chemotherapy and Multidisciplinary Approaches to Pediatric Sarcomas. In: Henshaw, R. (eds) Sarcoma. Springer, Cham. https://doi.org/10.1007/978-3-319-43121-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43121-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43119-2

  • Online ISBN: 978-3-319-43121-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics