Skip to main content

Slow Freezing of Oocytes

  • Chapter
  • First Online:
In Vitro Fertilization

Abstract

Oocyte cryopreservation has several potential applications in human assisted reproduction technology, such as to maximize cycle cumulative outcome, limit the number of embryos generated for fresh embryo transfer, and support programs of fertility preservation and oocyte donation. Mature oocytes are intrinsically more susceptible to cryodamage compared with embryos. Fully grown immature oocytes are even less amenable to cryopreservation, due to the necessity to preserve morpho-functional relationship with companion cumulus cells. Consequently, not surprisingly, initial attempts aimed at cryostoring oocytes with conventional controlled rate slow-cooling (CRSC) protocols were frustrated by low survival rates and poor clinical outcomes. Several studies have confirmed that cryopreservation, if performed with suboptimal protocols, generates diverse types of cell damage, such as zona pellucida rupture, release of cortical granules, ultrastructural damage, and alterations in cell cycle regulation. Notwithstanding, perseverant and systematic research efforts have led to improved slow-cooling protocols that, although unable to increase survival rates above 75–80%, can achieve clinical outcomes that, if assessed in terms of number of implantations per number of thawed oocytes, are comparable with those obtained by vitrification. Younger patients seem to benefit particularly from oocyte CRSC, while results from older women are rather disappointing even beyond the expected effect of female age. The health of babies derived from oocytes stored by CRSC has been investigated. Relevant studies are few and numerically limited but do not suggest a health impact of cryopreservation. Overall, over the last decade, oocyte cryopreservation by CRSC has been replaced by vitirification. However, some intrinsic advantages of CRSC should not be overlooked, such as a higher reproducibility of protocols and automated monitoring of cooling phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pacheco F, Oktay K. Current success and efficiency of autologous ovarian transplantation: a meta-analysis. Reprod Sci. SAGE PublicationsSage CA: Los Angeles, CA. 2017;24(8):1111–20.

    Article  PubMed  Google Scholar 

  2. Wang H, Racowsky C, Combelles CMH. Is it best to cryopreserve human cumulus-free immature oocytes before or after in vitro maturation? Cryobiology. 2012;65(2):79–87.

    Article  PubMed  Google Scholar 

  3. Brambillasca F, Guglielmo M-C, Coticchio G, Mignini Renzini M, Canto M, Fadini R. The current challenges to efficient immature oocyte cryopreservation. J Assist Reprod Genet. 2013;30(12):1531–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. VandeVoort CA, Leibo SP. Effect of cooling and exposure to ethylene glycol on in vitro maturation and embryo development of rhesus oocytes. Cryo Letters. 2005;26(5):305–12.

    PubMed  Google Scholar 

  5. Anderson E, Albertini DF. Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J Cell Biol. 1976;71(2):680–6.

    Article  CAS  PubMed  Google Scholar 

  6. Toth TL, Baka SG, Veeck LL, Jones HW, Muasher S, Lanzendorf SE. Fertilization and in vitro development of cryopreserved human prophase I oocytes. Fertil Steril. 1994;61(5):891–4.

    Article  CAS  PubMed  Google Scholar 

  7. Toth TL, Lanzendorf SE, Sandow BA, Veeck LL, Hassen WA, Hansen K, et al. Cryopreservation of human prophase I oocytes collected from unstimulated follicles. Fertil Steril. 1994;61(6):1077–82.

    Article  CAS  PubMed  Google Scholar 

  8. Son WY, Park SE, Lee KA, Lee WS, Ko JJ, Yoon TK, et al. Effects of 1,2-propanediol and freezing-thawing on the in vitro developmental capacity of human immature oocytes. Fertil Steril. 1996;66(6):995–9.

    Article  CAS  PubMed  Google Scholar 

  9. De Santis L, Gandolfi F, Pennarossa G, Maffei S, Gismano E, Intra G, et al. Expression and intracytoplasmic distribution of staufen and calreticulin in maturing human oocytes. J Assist Reprod Genet Springer US. 2015;32(4):645–52.

    Article  Google Scholar 

  10. Bianchi V, Coticchio G, Distratis V, Di Giusto N, Flamigni C, Borini A. Differential sucrose concentration during dehydration (0.2 Mol/l) and rehydration (0.3 Mol/l) increases the implantation rate of frozen human oocytes. Reprod Biomed Online. 2007;14(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  11. Fabbri R, Porcu E, Marsella T, Rocchetta G, Venturoli S, Flamigni C. Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum Reprod. 2001;16(3):411–6.

    Article  CAS  PubMed  Google Scholar 

  12. De Santis L, Coticchio G, Paynter S, Albertini D, Hutt K, Cino I, et al. Permeability of human oocytes to ethylene glycol and their survival and spindle configurations after slow cooling cryopreservation. Hum Reprod. 2007;22(10):2776–83.

    Article  PubMed  Google Scholar 

  13. Gook DA, Osborn SM, Johnston WI. Cryopreservation of mouse and human oocytes using 1,2-propanediol and the configuration of the meiotic spindle. Hum Reprod. 1993;8(7):1101–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sathananthan AH, Trounson A, Freemann L, Brady T. The effects of cooling human oocytes. Hum Reprod. 1988;3(8):968–77.

    Article  CAS  PubMed  Google Scholar 

  15. Van Blerkom J, Davis PW. Cytogenetic, cellular, and developmental consequences of cryopreservation of immature and mature mouse and human oocytes. Microsc Res Tech. 1994;27(2):165–93.

    Article  PubMed  Google Scholar 

  16. Stachecki JJ, Cohen J, Willadsen SM. Cryopreservation of unfertilized mouse oocytes: the effect of replacing sodium with choline in the freezing medium. Cryobiology. 1998;37(4):346–54.

    Article  CAS  PubMed  Google Scholar 

  17. Quintans CJ, Donaldson MJ, Bertolino MV, Pasqualini RS. Birth of two babies using oocytes that were cryopreserved in a choline-based freezing medium. Hum Reprod. 2002;17(12):3149–52.

    Article  CAS  PubMed  Google Scholar 

  18. Ghetler Y, Skutelsky E, Ben Nun I, Ben Dor L, Amihai D, Shalgi R. Human oocyte cryopreservation and the fate of cortical granules. Fertil Steril. 2006;86(1):210–6.

    Article  PubMed  Google Scholar 

  19. Porcu E, Fabbri R, Seracchioli R, Ciotti PM, Magrini O, Flamigni C. Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes. Fertil Steril. 1997;68(4):724–6.

    Article  CAS  PubMed  Google Scholar 

  20. Borini A, Bonu MA, Coticchio G, Bianchi V, Cattoli M, Flamigni C. Pregnancies and births after oocyte cryopreservation. Fertil Steril. 2004;82(3):601–5.

    Article  PubMed  Google Scholar 

  21. Levi Setti PE, Albani E, Novara PV, Cesana A, Morreale G. Cryopreservation of supernumerary oocytes in IVF/ICSI cycles. Hum Reprod. 2006;21(2):370–5.

    Article  CAS  PubMed  Google Scholar 

  22. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 2007;67(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  23. Cobo A, Kuwayama M, Pérez S, Ruiz A, Pellicer A, Remohí J. Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertil Steril. 2008;89(6):1657–64.

    Article  PubMed  Google Scholar 

  24. Gook DA, Schiewe MC, Osborn SM, Asch RH, Jansen RP, Johnston WI. Intracytoplasmic sperm injection and embryo development of human oocytes cryopreserved using 1,2-propanediol. Hum Reprod. 1995;10(10):2637–41.

    Article  CAS  PubMed  Google Scholar 

  25. Li X-H, Chen S-U, Zhang X, Tang M, Kui Y-R, Wu X, et al. Cryopreserved oocytes of infertile couples undergoing assisted reproductive technology could be an important source of oocyte donation: a clinical report of successful pregnancies. Hum Reprod. 2005;20(12):3390–4.

    Article  PubMed  Google Scholar 

  26. Nottola SA, Macchiarelli G, Coticchio G, Bianchi S, Cecconi S, De Santis L, et al. Ultrastructure of human mature oocytes after slow cooling cryopreservation using different sucrose concentrations. Hum Reprod. 2007;22(4):1123–33.

    Article  CAS  PubMed  Google Scholar 

  27. Gualtieri R, Iaccarino M, Mollo V, Prisco M, Iaccarino S, Talevi R. Slow cooling of human oocytes: ultrastructural injuries and apoptotic status. Fertil Steril. 2009;91(4):1023–34.

    Article  PubMed  Google Scholar 

  28. Nottola SA, Coticchio G, De Santis L, Macchiarelli G, Maione M, Bianchi S, et al. Ultrastructure of human mature oocytes after slow cooling cryopreservation with ethylene glycol. Reprod Biomed Online. 2008;17(3):368–77.

    Article  CAS  PubMed  Google Scholar 

  29. Nottola SA, Coticchio G, Sciajno R. Ultrastructural changes in human metaphase II oocytes cryopreserved by vitrifcation. The 24th annual meeting of the ESRE; 2008.

    Google Scholar 

  30. Coticchio G, Dal Canto M, Fadini R, Mignini Renzini M, Guglielmo M-C, Miglietta S, et al. Ultrastructure of human oocytes after in vitro maturation. Mol Hum Reprod. 2016;22(2):110–8.

    Article  CAS  PubMed  Google Scholar 

  31. Schalkoff ME, Oskowitz SP, Powers RD. Ultrastructural observations of human and mouse oocytes treated with cryopreservatives. Biol Reprod. 1989;40(2):379–93.

    Article  CAS  PubMed  Google Scholar 

  32. Nottola SA, Coticchio G, Sciajno R, Gambardella A, Maione M, Scaravelli G, et al. Ultrastructural markers of quality in human mature oocytes vitrified using cryoleaf and cryoloop. Reprod Biomed Online. 2009;19(Suppl 3):17–27.

    Article  PubMed  Google Scholar 

  33. Borini A, Sciajno R, Bianchi V, Sereni E, Flamigni C, Coticchio G. Clinical outcome of oocyte cryopreservation after slow cooling with a protocol utilizing a high sucrose concentration. Hum Reprod. 2006;126:443–50.

    Google Scholar 

  34. Cobo A, Diaz C. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril Elsevier Ltd. 2011;96(2):277–85.

    Article  Google Scholar 

  35. Fissore RA, Kurokawa M, Knott J, Zhang M, Smyth J. Mechanisms underlying oocyte activation and postovulatory ageing. Reproduction. 2002;124(6):745–54.

    Article  CAS  PubMed  Google Scholar 

  36. Ozil JP, Huneau D. Activation of rabbit oocytes: the impact of the Ca2+ signal regime on development. Development. 2001;128(6):917–28.

    CAS  PubMed  Google Scholar 

  37. Nottola SA, Albani E, Coticchio G, Palmerini MG, Lorenzo C, Scaravelli G, et al. Freeze/thaw stress induces organelle remodeling and membrane recycling in cryopreserved human mature oocytes. J Assist Reprod Genet. 2016;33(12):1559–70.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chian R-C, Gilbert L, Huang JYJ, Demirtas E, Holzer H, Benjamin A, et al. Live birth after vitrification of in vitro matured human oocytes. Fertil Steril. 2009;91(2):372–6.

    Article  CAS  PubMed  Google Scholar 

  39. Chian R-C, Huang JYJ, Gilbert L, Son W-Y, Holzer H, Cui SJ, et al. Obstetric outcomes following vitrification of in vitro and in vivo matured oocytes. Fertil Steril. 2009;91(6):2391–8.

    Article  PubMed  Google Scholar 

  40. Imesch P, Scheiner D, Xie M, Fink D, Macas E, Dubey R, et al. Developmental potential of human oocytes matured in vitro followed by vitrification and activation. J Ovarian Res BioMed Central. 2013;6(1):30.

    Article  Google Scholar 

  41. Steinman RM, Mellman IS, Muller WA, Cohn ZA. Endocytosis and the recycling of plasma membrane. J Cell Biol The Rockefeller University Press. 1983;96(1):1–27.

    Article  CAS  Google Scholar 

  42. Bogliolo L, Ariu F, Fois S, Rosati I, Zedda MT, Leoni G, et al. Morphological and biochemical analysis of immature ovine oocytes vitrified with or without cumulus cells. Theriogenology. 2007;68(8):1138–49.

    Article  CAS  PubMed  Google Scholar 

  43. Borini A, Bogliolo L, Coticchio G, Nicoli A. Activity of maturation promoting factor (MPF), but not microtubule-activated protein kinase (MAPK) decreases over time in frozen thawed human oocytes. Hum Reprod. 2009;24:i88.

    Google Scholar 

  44. Bromfield JJ, Coticchio G, Hutt K, Sciajno R, Borini A, Albertini DF. Meiotic spindle dynamics in human oocytes following slow-cooling cryopreservation. Hum Reprod. 2009;24(9):2114–23.

    Article  CAS  PubMed  Google Scholar 

  45. Parmegiani L, Cognigni GE, Bernardi S, Ciampaglia W, Infante F, Pocognoli P, et al. Freezing within 2 h from oocyte retrieval increases the efficiency of human oocyte cryopreservation when using a slow freezing/rapid thawing protocol with high sucrose concentration. Hum Reprod. 2008;23(8):1771–7.

    Article  CAS  PubMed  Google Scholar 

  46. Parmegiani L, Bertocci F, Garello C, Salvarani MC, Tambuscio G, Fabbri R. Efficiency of human oocyte slow freezing: results from five assisted reproduction centres. Reprod Biomed Online. 2009;18(3):352–9.

    Article  CAS  PubMed  Google Scholar 

  47. Bárcena P, Rodríguez M, Obradors A, Vernaeve V, Vassena R. Should we worry about the clock? Relationship between time to ICSI and reproductive outcomes in cycles with fresh and vitrified oocytes. Hum Reprod Oxford University Press. 2016;31(6):1182–91.

    Article  Google Scholar 

  48. De Santis L, Cino I, Rabellotti E, Papaleo E, Calzi F, Fusi FM, et al. Oocyte cryopreservation: clinical outcome of slow-cooling protocols differing in sucrose concentration. Reprod Biomed Online. 2007;14(1):57–63.

    Article  PubMed  Google Scholar 

  49. Chen S-U, Lien Y-R, Chen H-F, Chang L-J, Tsai Y-Y, Yang Y-S. Observational clinical follow-up of oocyte cryopreservation using a slow-freezing method with 1,2-propanediol plus sucrose followed by ICSI. Hum Reprod. 2005;20(7):1975–80.

    Article  CAS  PubMed  Google Scholar 

  50. Boldt J, Tidswell N, Sayers A, Kilani R, Cline D. Human oocyte cryopreservation: 5-year experience with a sodium-depleted slow freezing method. Reprod Biomed Online. 2006;13(1):96–100.

    Article  CAS  PubMed  Google Scholar 

  51. Lucena E, Bernal DP, Lucena C, Rojas A, Moran A, Lucena A. Successful ongoing pregnancies after vitrification of oocytes. Fertil Steril. 2006;85(1):108–11.

    Article  PubMed  Google Scholar 

  52. Gook DA, Edgar DH. Cryopreservation of the human female gamete: current and future issues. Hum Reprod. 1999;14(12):2938–40.

    Article  CAS  PubMed  Google Scholar 

  53. Edgar DH, Gook DA. How should the clinical efficiency of oocyte cryopreservation be measured? Reprod Biomed Online. 2007;14(4):430–5.

    Article  PubMed  Google Scholar 

  54. Bianchi V, Lappi M, Bonu MA, Borini A. Oocyte slow freezing using a 0.2-0.3 M sucrose concentration protocol: is it really the time to trash the cryopreservation machine? Fertil Steril. 2012;97(5):1101–7.

    Article  CAS  PubMed  Google Scholar 

  55. Gook DA, Edgar DH. Implantation rates of embryos generated from slow cooled human oocytes from young women are comparable to those of fresh and frozen embryos from the same age group. J Assist Reprod Genet. 2011;28(12):1171–6.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cobo A, Garrido N, Pellicer A, Remohí J. Six years’ experience in ovum donation using vitrified oocytes: report of cumulative outcomes, impact of storage time, and development of a predictive model for oocyte survival rate. Fertil Steril. 2015;104(6):1426–34.e1–8.

    Article  PubMed  Google Scholar 

  57. Porcu E, Fabbri R, Damiano G, Giunchi S, Fratto R, Ciotti PM, et al. Clinical experience and applications of oocyte cryopreservation. Mol Cell Endocrinol. 2000;169(1-2):33–7.

    Article  CAS  PubMed  Google Scholar 

  58. Borini A, Cattoli M, Mazzone S, Trevisi MR, Nalon M, Iadarola I. Survey of 105 babies born after slow-cooling oocyte cryopreservation. Hum Reprod. 2007;88:sS3–S14.

    Google Scholar 

  59. Tur-Kaspa I, Gal M, Horvitz A. Genetics and health of children born from cryopreserved oocytes. Fertil Steril. 88:S14.

    Article  Google Scholar 

  60. Maher B. Little consensus on egg freezing. Nat News Nature Publishing Group. 2007;449(7165):958.

    Article  CAS  Google Scholar 

  61. Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online. 2009;18(6):769–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Coticchio .

Editor information

Editors and Affiliations

Appendices

Review Questions

  1. 1.

    What are the limitations of oocyte slow-cooling approach?

  2. 2.

    Are all the protocols adopted equivalent in term of survival and outcomes?

  3. 3.

    Are data provided from invasive methods valuable to improve SC protocols?

  4. 4.

    Are there any advantages in the laboratory management of female fertility preservation via slow cooling?

  5. 5.

    Is it time to discontinue slow freezing?

Freezing

1.1 Freezing Solutions

Freezing Solution 1:

1.5 mol/l PrOH

 

1.08 ml PROH

 

6.92 ml PBS

 

2.00 ml PPS

Freezing Solution 2:

1.5 mol/l PrOH, 0.2 mol/l sucrose

 

1.08 ml PROH

 

6.92 ml PBS

 

2.00 ml PPS

 

684 mg sucrose

Notes

  1. (a)

    Freezing solutions must be stored at 4 °C. Warmed to room temperature (24−25 °C) before use.

  2. (b)

    All dehydration steps must be performed at room temperature.

Dehydration

  1. (a)

    For each oocyte (or group of oocytes), dispense 0.5 ml of the freezing solutions in separate wells of a 4-well plate.

  2. (b)

    Incubate sequentially oocytes in the freezing solutions according to the times indicated below.

    Solution

    Time

    Freezing Solution 1

    10 min

    Freezing Solution 2

    5 min

  1. (c)

    Load oocyte(s) into straw(s)

  2. (d)

    Seal straw(s)

Cooling to LN2 temperature

  1. (a)

    Place straws into the cryofreezer.

  2. (b)

    Run the controlled rate freezing program (see below).

Controlled rate freezing program

  1. 1.

    Decrease temperature from +20 °C to –7 °C at a rate of −2 °C/min.

  2. 2.

    “Hold” at –7 °C for 10 min.

  3. 3.

    Perform manual seeding at about 30% of the “hold” ramp.

  4. 4.

    Decrease temperature from −7 °C to –30 °C at a rate of −0.3 °C/min.

  5. 5.

    Decrease temperature from −30 °C to −150 °C at a rate of −50 °C/min.

  6. 6.

    Hold at –150 °C for 10 min.

  7. 7.

    Transfer into LN2 for long-term storage.

figure a

Thawing

1.1 Thawing Solutions

Thawing Solution 1:

1.0 mol/l PrOH, 0.3 mol/l sucrose

 

0.72 ml PROH

 

7.28 ml PBS

 

2.00 ml PPS

 

1026 mg sucrose

Thawing Solution 2:

0.5 mol/l PrOH, 0.3 mol/l sucrose

 

0.36 ml PROH

 

7.64 ml PBS

 

2.00 ml PPS

 

1026 mg sucrose

Thawing Solution 3:

0.3 mol/l sucrose

 

8.00 ml PBS

 

2.00 ml PPS

 

1026 mg sucrose

Thawing Solution 4:

 
 

8.00 ml PBS

 

2.00 ml PPS

Note

  1. (a)

    Freezing solutions must be stored at 4 °C. Warmed to room temperature (24−25 °C) before use.

  2. (b)

    All dehydration steps must be performed at room temperature.

Thawing

  1. (a)

    For each oocyte (or group of oocytes), dispense 0.5 ml of the thawing solutions in separate wells of a 4-well plate.

  2. (b)

    Remove the straw from LN2 and keep at room temperature for 30 sec.

  3. (c)

    Transfer the straw in a + 30 °C water bath for 40 sec.

Rehydration

  1. (d)

    Release the oocyte(s) from straw(s).

  2. (e)

    Incubate sequentially the oocyte(s) in the freezing solutions according to the times indicated below.

    Solution

    Time

    Thawing Solution 1

    5 min

    Thawing Solution 2

    5 min

    Thawing Solution 3

    10 min

    Thawing Solution 4

    10 min

  1. (f)

    Transfer the oocyte(s) to 37 °C for 10 min, while in thawing solution 4 and after the initial incubation at room temperature.

  2. (g)

    Transfer the oocyte(s) in medium for oocyte culture and incubate under standard conditions for 60−90 min before microinjection.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coticchio, G., De Santis, L. (2019). Slow Freezing of Oocytes. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) In Vitro Fertilization. Springer, Cham. https://doi.org/10.1007/978-3-319-43011-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43011-9_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43010-2

  • Online ISBN: 978-3-319-43011-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics