Skip to main content

Current and Novel Methods for Chromosome Testing

  • Chapter
  • First Online:
In Vitro Fertilization

Abstract

More than 50% cleavage and blastocyst stage embryos produced in-vitro are found to be chromosomally abnormal, increasing up to 80% in women over 42 years of age. While some abnormal embryos arrest during culture, most do not. Embryos with numerical chromosomal abnormalities are usually not compatible with either implantation or birth, with and up to 70% of spontaneous abortions are chromosomally abnormal, clearly highlighting the detrimental effects of aneuploidy. Thus, we hypothesized that the selection of normal (euploid) embryos for transfer should improve the success rate of IVF. This process of selection against aneuploidy is known as preimplantation genetic diagnosis (PGD) of aneuploidy (PGD-A) or preimplantation genetic screening (PGS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Munne S. Preimplantation genetic diagnosis for aneuploidy and translocations using array comparative genomic hybridization. Curr Genomics. 2012;13(6):463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Munne S, et al. The use of first polar bodies for preimplantation diagnosis of aneuploidy. Hum Reprod. 1995;10(4):1014–20.

    Article  CAS  PubMed  Google Scholar 

  3. Munne S, et al. Diagnosis of major chromosome aneuploidies in human preimplantation embryos. Hum Reprod. 1993;8(12):2185–91.

    Article  CAS  PubMed  Google Scholar 

  4. Velilla E, Escudero T, Munne S. Blastomere fixation techniques and risk of misdiagnosis for preimplantation genetic diagnosis of aneuploidy. Reprod Biomed Online. 2002;4(3):210–7.

    Article  PubMed  Google Scholar 

  5. Rubio I, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–1294 e5.

    Article  PubMed  Google Scholar 

  6. Mastenbroek S, et al. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  7. Munne S, et al. Maternal age, morphology, development and chromosome abnormalities in over 6000 cleavage-stage embryos. Reprod Biomed Online. 2007;14(5):628–34.

    Article  CAS  PubMed  Google Scholar 

  8. Scott RT Jr, et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013;100(3):697–703.

    Article  PubMed  Google Scholar 

  9. Colls P, et al. Increased efficiency of preimplantation genetic diagnosis for aneuploidy by testing 12 chromosomes. Reprod Biomed Online. 2009;19(4):532–8.

    Article  CAS  PubMed  Google Scholar 

  10. Colls P, et al. Increased efficiency of preimplantation genetic diagnosis for infertility using “no result rescue”. Fertil Steril. 2007;88(1):53–61.

    Article  PubMed  Google Scholar 

  11. Munne S, et al. Positive outcome after preimplantation diagnosis of aneuploidy in human embryos. Hum Reprod. 1999;14(9):2191–9.

    Article  CAS  PubMed  Google Scholar 

  12. Munne S, et al. Improved implantation after preimplantation genetic diagnosis of aneuploidy. Reprod Biomed Online. 2003;7(1):91–7.

    Article  PubMed  Google Scholar 

  13. Munne S, et al. Preimplantation genetic diagnosis reduces pregnancy loss in women aged 35 years and older with a history of recurrent miscarriages. Fertil Steril. 2005;84(2):331–5.

    Article  PubMed  Google Scholar 

  14. Munne S, et al. Preimplantation genetic diagnosis significantly reduces pregnancy loss in infertile couples: a multicenter study. Fertil Steril. 2006;85(2):326–32.

    Article  CAS  PubMed  Google Scholar 

  15. Verlinsky Y, et al. Preimplantation testing for chromosomal disorders improves reproductive outcome of poor-prognosis patients. Reprod Biomed Online. 2005;11:219–25.

    Article  CAS  PubMed  Google Scholar 

  16. Milán M, et al. Redefining advanced maternal age as an indication for preimplantation genetic screening. Reprod Biomed Online. 2010;21:649–57.

    Article  PubMed  Google Scholar 

  17. Rubio C, et al. Prognostic factors for preimplantation genetic screening in repeated pregnancy loss. Reprod Biomed Online. 2009;18(5):687–93.

    Article  PubMed  Google Scholar 

  18. Garrisi JG, et al. Effect of infertility, maternal age, and number of previous miscarriages on the outcome of preimplantation genetic diagnosis for idiopathic recurrent pregnancy loss. Fertil Steril. 2009;92(1):288–95.

    Article  PubMed  Google Scholar 

  19. Hardarson T, et al. Preimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate: a randomized controlled trial. Hum Reprod. 2008;23(12):2806–12.

    Article  CAS  PubMed  Google Scholar 

  20. Staessen C, et al. Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum Reprod. 2004;19:2849–58.

    Article  PubMed  Google Scholar 

  21. Platteau P, et al. Preimplantation genetic diagnosis for aneuploidy screening in patients with unexplained recurrent miscarriages. Fertil Steril. 2005;83(2):393–7.

    Article  PubMed  Google Scholar 

  22. Cimadomo D, et al. The impact of biopsy on human embryo developmental potential during Preimplantation genetic diagnosis. Biomed Res Int. 2016;2016:7193075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Van de Velde H, et al. Embryo implantation after biopsy of one or two cells from cleavage-stage embryos with a view to preimplantation genetic diagnosis. Prenat Diagn. 2000;20(13):1030–7.

    Article  PubMed  Google Scholar 

  24. Magli MC, et al. Embryo morphology and development are dependent on the chromosomal complement. Fertil Steril. 2007;87(3):534–41.

    Article  PubMed  Google Scholar 

  25. Gutierrez-Mateo C, et al. Validation of microarray comparative genomic hybridization for comprehensive chromosome analysis of embryos. Fertil Steril. 2011;95(3):953–8.

    Article  CAS  PubMed  Google Scholar 

  26. Coulam CB, et al. Discordance among blastomeres renders preimplantation genetic diagnosis for aneuploidy ineffective. J Assist Reprod Genet. 2007;24(1):37–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baart EB, et al. Fluorescence in situ hybridization analysis of two blastomeres from day 3 frozen-thawed embryos followed by analysis of the remaining embryo on day 5. Hum Reprod. 2004;19(3):685–93.

    Article  CAS  PubMed  Google Scholar 

  28. Munne S, Wells D, Cohen J. Technology requirements for preimplantation genetic diagnosis to improve assisted reproduction outcomes. Fertil Steril. 2010;94(2):408–30.

    Article  PubMed  Google Scholar 

  29. Munne S, et al. Improved detection of aneuploid blastocysts using a new 12-chromosome FISH test. Reprod Biomed Online. 2010;20(1):92–7.

    Article  CAS  PubMed  Google Scholar 

  30. Spits C, Sermon K. PGD for monogenic disorders: aspects of molecular biology. Prenat Diagn. 2009;29(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  31. Thornhill AR, et al. ESHRE PGD Consortium ‘Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)’. Hum Reprod. 2005;20(1):35–48.

    Article  CAS  PubMed  Google Scholar 

  32. Liebaers I, et al. Clinical experience with preimplantation genetic diagnosis and intracytoplasmic sperm injection. Hum Reprod. 1998;13(Suppl 1):186–95.

    Article  PubMed  Google Scholar 

  33. Braude P, et al. Preimplantation genetic diagnosis. Nat Rev Genet. 2002;3(12):941–53.

    Article  CAS  PubMed  Google Scholar 

  34. Verlinsky Y, et al. Analysis of the first polar body: preconception genetic diagnosis. Hum Reprod. 1990;5(7):826–9.

    Article  CAS  PubMed  Google Scholar 

  35. Rechitsky S, et al. Accuracy of preimplantation diagnosis of single-gene disorders by polar body analysis of oocytes. J Assist Reprod Genet. 1999;16(4):192–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dawson A, Griesinger G, Diedrich K. Screening oocytes by polar body biopsy. Reprod Biomed Online. 2006;13(1):104–9.

    Article  CAS  PubMed  Google Scholar 

  37. Ogilvie CM, Braude PR, Scriven PN. Preimplantation genetic diagnosis--an overview. J Histochem Cytochem. 2005;53(3):255–60.

    Article  CAS  PubMed  Google Scholar 

  38. Griffin DK, et al. Dual fluorescent in situ hybridisation for simultaneous detection of X and Y chromosome-specific probes for the sexing of human preimplantation embryonic nuclei. Hum Genet. 1992;89(1):18–22.

    Article  CAS  PubMed  Google Scholar 

  39. Sermon K, Van Steirteghem A, Liebaers I. Preimplantation genetic diagnosis. Lancet. 2004;363(9421):1633–41.

    Article  PubMed  Google Scholar 

  40. McArthur SJ, et al. Blastocyst trophectoderm biopsy and preimplantation genetic diagnosis for familial monogenic disorders and chromosomal translocations. Prenat Diagn. 2008;28(5):434–42.

    Article  CAS  PubMed  Google Scholar 

  41. Fragouli E, et al. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum Reprod. 2011;26(2):480–90.

    Article  CAS  PubMed  Google Scholar 

  42. Delhanty JD, et al. Multicolour FISH detects frequent chromosomal mosaicism and chaotic division in normal preimplantation embryos from fertile patients. Hum Genet. 1997;99(6):755–60.

    Article  CAS  PubMed  Google Scholar 

  43. Munne S, et al. Chromosome mosaicism in cleavage-stage human embryos: evidence of a maternal age effect. Reprod Biomed Online. 2002;4(3):223–32.

    Article  PubMed  Google Scholar 

  44. Katz-Jaffe MG, Trounson AO, Cram DS. Mitotic errors in chromosome 21 of human preimplantation embryos are associated with non-viability. Mol Hum Reprod. 2004;10(2):143–7.

    Article  CAS  PubMed  Google Scholar 

  45. Wells D, Delhanty JD. Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod. 2000;6(11):1055–62.

    Article  CAS  PubMed  Google Scholar 

  46. Voullaire L, et al. Chromosome analysis of blastomeres from human embryos by using comparative genomic hybridization. Hum Genet. 2000;106(2):210–7.

    Article  CAS  PubMed  Google Scholar 

  47. Santos MA, et al. The fate of the mosaic embryo: chromosomal constitution and development of day 4, 5 and 8 human embryos. Hum Reprod. 2010;25(8):1916–26.

    Article  PubMed  Google Scholar 

  48. Los FJ, Van Opstal D, van den Berg C. The development of cytogenetically normal, abnormal and mosaic embryos: a theoretical model. Hum Reprod Update. 2004;10(1):79–94.

    Article  PubMed  Google Scholar 

  49. Bolton H, et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7:11165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rienzi L, et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2017;23(2):139–55. https://doi.org/10.1093/humupd/dmw038.

  51. Van Landuyt L, et al. Blastocyst formation in in vitro fertilization versus intracytoplasmic sperm injection cycles: influence of the fertilization procedure. Fertil Steril. 2005;83(5):1397–403.

    Article  PubMed  Google Scholar 

  52. Youssry M, et al. Current aspects of blastocyst cryopreservation. Reprod Biomed Online. 2008;16(2):311–20.

    Article  CAS  PubMed  Google Scholar 

  53. Schoolcraft WB, et al. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril. 2010;94(5):1700–6.

    Article  PubMed  Google Scholar 

  54. Chang HJ, et al. Optimal condition of vitrification method for cryopreservation of human ovarian cortical tissues. J Obstet Gynaecol Res. 2011;37(8):1092–101.

    Article  PubMed  Google Scholar 

  55. Sandalinas M, et al. Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum Reprod. 2001;16(9):1954–8.

    Article  CAS  PubMed  Google Scholar 

  56. Mamas T, et al. Detection of aneuploidy by array comparative genomic hybridization using cell lines to mimic a mosaic trophectoderm biopsy. Fertil Steril. 2012;97(4):943–7.

    Article  CAS  PubMed  Google Scholar 

  57. Northrop LE, et al. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod. 2010;16(8):590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kalousek DK, Barrett IJ, Gartner AB. Spontaneous abortion and confined chromosomal mosaicism. Hum Genet. 1992;88(6):642–6.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang S, et al. Number of biopsied trophectoderm cells is likely to affect the implantation potential of blastocysts with poor trophectoderm quality. Fertil Steril. 2016;105(5):1222–1227 e4.

    Article  PubMed  Google Scholar 

  60. McArthur SJ, et al. Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts. Fertil Steril. 2005;84(6):1628–36.

    Article  PubMed  Google Scholar 

  61. Capalbo A, et al. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod. 2014;29(6):1173–81.

    Article  PubMed  Google Scholar 

  62. Houldsworth J, Chaganti RS. Comparative genomic hybridization: an overview. Am J Pathol. 1994;145(6):1253–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sismani C, et al. Cryptic genomic imbalances in patients with de novo or familial apparently balanced translocations and abnormal phenotype. Mol Cytogenet. 2008;1:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Goobie S, et al. Molecular and clinical characterization of de novo and familial cases with microduplication 3q29: guidelines for copy number variation case reporting. Cytogenet Genome Res. 2008;123(1–4):65–78.

    Article  CAS  PubMed  Google Scholar 

  65. Beaudet AL, Belmont JW. Array-based DNA diagnostics: let the revolution begin. Annu Rev Med. 2008;59:113–29.

    Article  CAS  PubMed  Google Scholar 

  66. Stejskalova E, et al. Cytogenetic and array comparative genomic hybridization analysis of a series of hepatoblastomas. Cancer Genet Cytogenet. 2009;194(2):82–7.

    Article  CAS  PubMed  Google Scholar 

  67. Handyside AH, et al. Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J Med Genet. 2010;47(10):651–8.

    Article  PubMed  Google Scholar 

  68. Yang Z, et al. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol Cytogenet. 2012;5(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Johnson DS, et al. Preclinical validation of a microarray method for full molecular karyotyping of blastomeres in a 24-h protocol. Hum Reprod. 2010;25(4):1066–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Treff NR, et al. Robust embryo identification using first polar body single nucleotide polymorphism microarray-based DNA fingerprinting. Fertil Steril. 2010;93(7):2453–5.

    Article  CAS  PubMed  Google Scholar 

  71. Vanneste E, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15(5):577–83.

    Article  CAS  PubMed  Google Scholar 

  72. Bisignano A, et al. PGD and aneuploidy screening for 24 chromosomes: advantages and disadvantages of competing platforms. Reprod Biomed Online. 2011;23(6):677–85.

    Article  CAS  PubMed  Google Scholar 

  73. Munne S, et al. Outcome of preimplantation genetic diagnosis of translocations. Fertil Steril. 2000;73(6):1209–18.

    Article  CAS  PubMed  Google Scholar 

  74. Treff N, et al. Four hour 24 chromosome aneuploidy screening using high throughput PCR SNP allele ratio analyses. Fertil Steril. 2009;92(3):S49–50.

    Google Scholar 

  75. Treff NR, et al. Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil Steril. 2012;97(4):819–24.

    Article  CAS  PubMed  Google Scholar 

  76. Forman EM, et al. The mind your health project: a randomized controlled trial of an innovative behavioral treatment for obesity. Obesity (Silver Spring). 2013;21(6):1119–26.

    Article  CAS  Google Scholar 

  77. Treff N, et al. Evaluation of targeted next-generation sequencing–based preimplantation genetic diagnosis of monogenic disease. Fertil Steril. 2013;99(5):1377.

    Article  CAS  PubMed  Google Scholar 

  78. Scott RT Jr, Treff NR. Assessing the reproductive competence of individual embryos: a proposal for the validation of new “-omics” technologies. Fertil Steril. 2010;94(3):791–4.

    Article  PubMed  Google Scholar 

  79. Treff NR, et al. A novel single-cell DNA fingerprinting method successfully distinguishes sibling human embryos. Fertil Steril. 2010;94(2):477–84.

    Article  CAS  PubMed  Google Scholar 

  80. Fiorentino F, et al. Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertil Steril. 2014;101(5):1375–82.

    Article  CAS  PubMed  Google Scholar 

  81. Kung A, et al. Validation of next-generation sequencing for comprehensive chromosome screening of embryos. Reprod Biomed Online. 2015;31(6):760–9.

    Article  CAS  PubMed  Google Scholar 

  82. Sher G, et al. Oocyte karyotyping by comparative genomic hybridization [correction of hybrydization] provides a highly reliable method for selecting “competent” embryos, markedly improving in vitro fertilization outcome: a multiphase study. Fertil Steril. 2007;87(5):1033–40.

    Article  CAS  PubMed  Google Scholar 

  83. Fragouli E, et al. Comparative genomic hybridization of oocytes and first polar bodies from young donors. Reprod Biomed Online. 2009;19(2):228–37.

    Article  CAS  PubMed  Google Scholar 

  84. Fragouli E, et al. Comprehensive chromosome screening of polar bodies and blastocysts from couples experiencing repeated implantation failure. Fertil Steril. 2010;94(3):875–87.

    Article  PubMed  Google Scholar 

  85. Shapiro BS, et al. High ongoing pregnancy rates after deferred transfer through bipronuclear oocyte cryopreservation and post-thaw extended culture. Fertil Steril. 2009;92(5):1594–9.

    Article  PubMed  Google Scholar 

  86. Scott RT Jr, et al. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100(3):624–30.

    Article  PubMed  Google Scholar 

  87. Dahdouh EM, et al. Technical update: preimplantation genetic diagnosis and screening. J Obstet Gynaecol Can. 2015;37(5):451–63.

    Article  PubMed  Google Scholar 

  88. Lee E, et al. The clinical effectiveness of preimplantation genetic diagnosis for aneuploidy in all 24 chromosomes (PGD-A): systematic review. Hum Reprod. 2015;30(2):473–83.

    Article  PubMed  Google Scholar 

  89. van Echten-Arends J, et al. Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum Reprod Update. 2011;17(5):620–7.

    Article  PubMed  Google Scholar 

  90. Munne S, Wells D. Detection of mosaicism at blastocyst stage with the use of high-resolution next-generation sequencing. Fertil Steril. 2017;107(5):1085–91.

    Article  PubMed  Google Scholar 

  91. Fragouli E, et al. Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid-aneuploid blastocysts. Hum Genet. 2017;136(7):805–19.

    Article  CAS  PubMed  Google Scholar 

  92. Maxwell SM, et al. Why do euploid embryos miscarry? A case-control study comparing the rate of aneuploidy within presumed euploid embryos that resulted in miscarriage or live birth using next-generation sequencing. Fertil Steril. 2016;106(6):1414–1419.e5.

    Article  CAS  PubMed  Google Scholar 

  93. Grifo J, et al. Why do array-CGH (ACGH) euploid embryos miscarry? Reanalysis by NGS reveals undetected abnormalities which would have prevented 56% of the miscarriages. Fertil Steril. 2015;104:e14.

    Google Scholar 

  94. Greco E, Minasi MG, Fiorentino F. Healthy babies after intrauterine transfer of mosaic Aneuploid blastocysts. N Engl J Med. 2015;373(21):2089–90.

    Article  PubMed  Google Scholar 

  95. Munné S, Grifo J, Wells D. Mosaicism: “survival of the fittest” versus “no embryo left behind”. Fertil Steril. 2016;105:1146.

    Article  PubMed  Google Scholar 

  96. Munne S, et al. Treatment-related chromosome abnormalities in human embryos. Hum Reprod. 1997;12(4):780–4.

    Article  CAS  PubMed  Google Scholar 

  97. Munné S, et al. Euploidy rates in donor egg cycles significantly differ between fertility centers. Hum Reprod. 2017;32(4):743–9.

    Article  PubMed  Google Scholar 

  98. Munne S, Alikani M. Culture-induced chromosome abnormalities: the canary in the mine. Reprod Biomed Online. 2011;22(6):506–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarthak Sawarkar .

Editor information

Editors and Affiliations

Review Questions

Review Questions

  1. 1.

    More than ____ in vitro embryos are found to be chromosomally abnormal.

    1. A.

      10%

    2. B.

      25%

    3. C.

      50%

    4. D.

      35%

  1. 2.

    Embryos from which of the developmental stages may be used in obtaining biological material for genetic testing of embryos?

    1. A.

      Polar body biopsy

    2. B.

      Blastocyst biopsy

    3. C.

      Blastomere biopsy

    4. D.

      All of the above

  1. 3.

    Multiplexing of a large number of samples is possible in next-generation sequencing. This is possible due to

    1. A.

      Addition of barcodes, 6–10 bp unique oligonucleotides

    2. B.

      High number of reads possible during a sequencing run

    3. C.

      Blastocyst biopsy samples being used for NGS compared to polar body or blastomere biopsy samples

    4. D.

      None of the above

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sawarkar, S., Munné, S. (2019). Current and Novel Methods for Chromosome Testing. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) In Vitro Fertilization. Springer, Cham. https://doi.org/10.1007/978-3-319-43011-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43011-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43010-2

  • Online ISBN: 978-3-319-43011-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics