Skip to main content

Inhibitors of Upstream Inducers of STAT Activation

  • Chapter
  • First Online:
STAT Inhibitors in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 619 Accesses

Abstract

Activation of STATs, especially STAT3 and STAT5, is commonly observed in solid tumors and hematological malignancies. In several instances the key upstream signaling molecules responsible for STAT activation have been identified. Many of these proteins are able to be targeted with specific antibodies or small molecules and so represent attractive candidates for therapeutic development. This chapter details several promising agents that target receptors — both receptor tyrosine kinases and cytokine receptors — and downstream kinases that activate STATs in cancer, including EGFR, VEGFR, IL-6R, SRC and ABL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ji H, Sharpless NE, Wong KK (2006) EGFR targeted therapy: view from biological standpoint. Cell Cycle 5:2072–2076

    Article  CAS  PubMed  Google Scholar 

  2. Waksal HW (1999) Role of an anti-epidermal growth factor receptor in treating cancer. Cancer Metastasis Rev 18:427–436

    Article  CAS  PubMed  Google Scholar 

  3. Ung N, Putoczki TL, Stylli SS et al (2014) Anti-EGFR therapeutic efficacy correlates directly with inhibition of STAT3 activity. Cancer Biol Ther 15:623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goldstein NI, Prewett M, Zuklys K et al (1995) Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1:1311–1318

    CAS  PubMed  Google Scholar 

  5. Messersmith WA, Ahnen DJ (2008) Targeting EGFR in colorectal cancer. N Engl J Med 359:1834–1836

    Article  CAS  PubMed  Google Scholar 

  6. Licitra L, Storkel S, Kerr KM et al (2013) Predictive value of epidermal growth factor receptor expression for first-line chemotherapy plus cetuximab in patients with head and neck and colorectal cancer: analysis of data from the EXTREME and CRYSTAL studies. Eur J Cancer 49:1161–1168

    Article  CAS  PubMed  Google Scholar 

  7. Inoue K, Slaton JW, Perrotte P et al (2000) Paclitaxel enhances the effects of the anti-epidermal growth factor receptor monoclonal antibody ImClone C225 in mice with metastatic human bladder transitional cell carcinoma. Clin Cancer Res 6:4874–4884

    CAS  PubMed  Google Scholar 

  8. Bonner JA, Trummel HQ, Bonner AB et al (2015) Enhancement of cetuximab-induced radiosensitization by JAK-1 inhibition. BMC Cancer 15:673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  10. Williams R (2005) Treatment of acute myeloid leukemia with gefitinib: clinical trials recommended. Nat Clin Pract Oncol 2:540

    Article  Google Scholar 

  11. Deangelo DJ, Neuberg D, Amrein PC et al (2014) A phase II study of the EGFR inhibitor gefitinib in patients with acute myeloid leukemia. Leuk Res 38:430–434

    Article  CAS  PubMed  Google Scholar 

  12. Dielschneider RF, Xiao W, Yoon JY et al (2014) Gefitinib targets ZAP-70-expressing chronic lymphocytic leukemia cells and inhibits B-cell receptor signaling. Cell Death Dis 5:e1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu K, Chang Q, Lu Y et al (2013) Gefitinib resistance resulted from STAT3-mediated Akt activation in lung cancer cells. Oncotarget 4:2430–2438

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sen M, Joyce S, Panahandeh M et al (2012) Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin Cancer Res 18:4986–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wen W, Wu J, Liu L et al (2015) Synergistic anti-tumor effect of combined inhibition of EGFR and JAK/STAT3 pathways in human ovarian cancer. Mol Cancer 14:100–104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Petty TL (2003) Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol 1:3–4

    Google Scholar 

  17. Leeman-Neill RJ, Seethala RR, Singh SV et al (2011) Inhibition of EGFR-STAT3 signaling with erlotinib prevents carcinogenesis in a chemically-induced mouse model of oral squamous cell carcinoma. Cancer Prev Res 4:230–237

    Article  CAS  Google Scholar 

  18. Lainey E, Sebert M, Thepot S et al (2012) Erlotinib antagonizes ABC transporters in acute myeloid leukemia. Cell Cycle 11:4079–4092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lainey E, Wolfromm A, Marie N et al (2013) Azacytidine and erlotinib exert synergistic effects against acute myeloid leukemia. Oncogene 32:4331–4342

    Article  CAS  PubMed  Google Scholar 

  20. Chan G, Pilichowska M (2007) Complete remission in a patient with acute myelogenous leukemia treated with erlotinib for non small-cell lung cancer. Blood 110:1079–1080

    Article  CAS  PubMed  Google Scholar 

  21. Sayar H, Czader M, Amin C et al (2015) Pilot study of erlotinib in patients with acute myeloid leukemia. Leuk Res 39:170–172

    Article  CAS  PubMed  Google Scholar 

  22. Thepot S, Boehrer S, Seegers V et al (2014) A phase I/II trial of Erlotinib in higher risk myelodysplastic syndromes and acute myeloid leukemia after azacitidine failure. Leuk Res 38:1430–1434

    Article  CAS  PubMed  Google Scholar 

  23. Li Z, Xu M, Xing S et al (2007) Erlotinib effectively inhibits JAK2V617F activity and Polycythemia vera cell growth. J Biol Chem 282:3428–3432

    Article  CAS  PubMed  Google Scholar 

  24. Nelson MH, Dolder CR (2006) Lapatinib: a novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann Pharmacother 40:261–269

    Article  CAS  PubMed  Google Scholar 

  25. Xia W, Bacus S, Hegde P et al (2006) A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci U S A 103:7795–7800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743

    Article  CAS  PubMed  Google Scholar 

  27. Burris HA, Hurwitz HI, Dees EC et al (2005) Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 23:5305–5313

    Article  CAS  PubMed  Google Scholar 

  28. Alvarez RH, Valero V, Hortobagyi GN (2010) Emerging targeted therapies for breast cancer. J Clin Oncol 28:3366–3379

    Article  CAS  PubMed  Google Scholar 

  29. Sambade MJ, Camp JT, Kimple RJ et al (2009) Mechanism of lapatinib-mediated radiosensitization of breast cancer cells is primarily by inhibition of the Raf > MEK > ERK mitogen-activated protein kinase cascade and radiosensitization of lapatinib-resistant cells restored by direct inhibition of MEK. Radiother Oncol 93:639–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Juliachs M, Castillo-Avila W, Vidal A et al (2013) ErbBs inhibition by lapatinib blocks tumor growth in an orthotopic model of human testicular germ cell tumor. Int J Cancer 133:235–246

    Article  CAS  PubMed  Google Scholar 

  31. Lainey E, Thepot S, Bouteloup C et al (2011) Tyrosine kinase inhibitors for the treatment of acute myeloid leukemia: delineation of anti-leukemic mechanisms of action. Biochem Pharmacol 82:1457–1466

    Article  CAS  PubMed  Google Scholar 

  32. Huang HL, Chen YC, Huang YC et al (2011) Lapatinib induces autophagy, apoptosis and megakaryocytic differentiation in chronic myelogenous leukemia K562 cells. PLoS One 6:e29014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ranson M (2004) Epidermal growth factor receptor tyrosine kinase inhibitors. Br J Cancer 90:2250–2255

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bruns CJ, Solorzano CC, Harbison MT et al (2000) Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res 60:2926–2935

    CAS  PubMed  Google Scholar 

  35. Kedar D, Baker CH, Killion JJ et al (2002) Blockade of the epidermal growth factor receptor signaling inhibits angiogenesis leading to regression of human renal cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 8:3592–3600

    CAS  PubMed  Google Scholar 

  36. Hoekstra R, Dumez H, Eskens FA et al (2005) Phase I and pharmacologic study of PKI166, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. Clin Cancer Res 11:6908–6915

    Article  CAS  PubMed  Google Scholar 

  37. Rapisarda A, Melillo G (2012) Role of the VEGF/VEGFR axis in cancer biology and therapy. Adv Cancer Res 114:237–267

    Article  CAS  PubMed  Google Scholar 

  38. Escudier B, Gore M (2011) Axitinib for the management of metastatic renal cell carcinoma. Drugs R D 11(2):113–126

    Article  PubMed  Google Scholar 

  39. Wilmes LJ, Pallavicini MG, Fleming LM et al (2007) AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 25:319–327

    Article  CAS  PubMed  Google Scholar 

  40. Spano JP, Chodkiewicz C, Maurel J et al (2008) Efficacy of gemcitabine plus axitinib compared with gemcitabine alone in patients with advanced pancreatic cancer: an open-label randomised phase II study. Lancet 371:2101–2108

    Article  CAS  PubMed  Google Scholar 

  41. Zhang RR (2013) Enhanced antitumor effect of axitinib synergistic interaction with AG490 via VEGFR2/JAK2/STAT3 signaling mediated epithelial–mesenchymal transition in cervical cancer in vitro. Asian Biomed 7:39–49

    CAS  Google Scholar 

  42. Yuan H, Cai P, Li Q et al (2014) Axitinib augments antitumor activity in renal cell carcinoma via STAT3-dependent reversal of myeloid-derived suppressor cell accumulation. Biomed Pharmacother 68:751–756

    Article  CAS  PubMed  Google Scholar 

  43. Killock D (2015) Haematological cancer: BCL-ABL1 resistance mutation—breakthrough with axitinib. Nat Rev Clin Oncol 12:252

    Article  PubMed  Google Scholar 

  44. Zhang S, Cao Z, Tian H et al (2011) SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo. Clin Cancer Res 17:4439–4450

    Article  CAS  PubMed  Google Scholar 

  45. Shen G, Li Y, Du T et al (2012) SKLB1002, a novel inhibitor of VEGF receptor 2 signaling, induces vascular normalization to improve systemically administered chemotherapy efficacy. Neoplasma 59:486–493

    Article  CAS  PubMed  Google Scholar 

  46. Nie W, Ma XL, Sang YX et al (2014) Synergic antitumor effect of SKLB1002 and local hyperthermia in 4T1 and CT26. Clin Exp Med 14:203–213

    Article  CAS  PubMed  Google Scholar 

  47. James C, Ugo V, Le Couédic J-P et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148

    Article  CAS  PubMed  Google Scholar 

  48. Shuai K, Halpern J, ten Hoeve J et al (1996) Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 13:247–254

    CAS  PubMed  Google Scholar 

  49. Bromberg JF, Horvath CM, Besser D et al (1998) Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol 18:2553–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hennequin LF, Allen J, Breed J et al (2006) N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J Med Chem 49:6465–6488

    Article  CAS  PubMed  Google Scholar 

  51. Nam HJ, Im SA, Oh DY et al (2013) Antitumor activity of saracatinib (AZD0530), a c-Src/Abl kinase inhibitor, alone or in combination with chemotherapeutic agents in gastric cancer. Mol Cancer Ther 12:16–26

    Article  CAS  PubMed  Google Scholar 

  52. Simpkins F, Hevia-Paez P, Sun J et al (2012) Src Inhibition with saracatinib reverses fulvestrant resistance in ER-positive ovarian cancer models in vitro and in vivo. Clin Cancer Res 18(21):5911–5923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Puls LN, Eadens M, Messersmith W (2011) Current status of SRC inhibitors in solid tumor malignancies. Oncologist 16:566–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gucalp A, Sparano JA, Caravelli J et al (2011) Phase II trial of saracatinib (AZD0530), an oral SRC-inhibitor for the treatment of patients with hormone receptor-negative metastatic breast cancer. Clin Breast Cancer 11:306–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Puttini M, Coluccia AM, Boschelli F et al (2006) In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl + neoplastic cells. Cancer Res 66:11314–11322

    Article  CAS  PubMed  Google Scholar 

  56. Vultur A, Buettner R, Kowolik C et al (2008) SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol Cancer Ther 7:1185–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Golas JM, Lucas J, Etienne C et al (2005) SKI-606, a Src/Abl inhibitor with in vivo activity in colon tumor xenograft models. Cancer Res 65:5358–5364

    Article  CAS  PubMed  Google Scholar 

  58. Boschelli F, Arndt K, Gambacorti-Passerini C (2010) Bosutinib: a review of preclinical studies in chronic myelogenous leukaemia. Eur J Cancer 46:1781–1789

    Article  CAS  PubMed  Google Scholar 

  59. Cortes JE, Kim DW, Kantarjian HM et al (2012) Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol 30(28):3486–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lombardo LJ, Lee FY, Chen P et al (2004) Discovery of N-(2-Chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47:6658–6661

    Article  CAS  PubMed  Google Scholar 

  61. Chang AY, Wang M (2013) Molecular mechanisms of action and potential biomarkers of growth inhibition of dasatinib (BMS-354825) on hepatocellular carcinoma cells. BMC Cancer 13:267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fang Y, Zhong L, Lin M et al (2013) MEK/ERK dependent activation of STAT1 mediates dasatinib-induced differentiation of acute myeloid leukemia. PLoS One 8:e66915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen J, Lan T, Zhang W et al (2015) Dasatinib enhances cisplatin sensitivity in human esophageal squamous cell carcinoma (ESCC) cells via suppression of PI3K/AKT and Stat3 pathways. Arch Biochem Biophys 575:38–45

    Article  CAS  PubMed  Google Scholar 

  64. Premkumar DR, Jane EP, Agostino NR et al (2010) Dasatinib synergizes with JSI-124 to inhibit growth and migration and induce apoptosis of malignant human glioma cells. J Carcinog 9:1477

    Google Scholar 

  65. Rice L, Lepler S, Pampo C et al (2012) Impact of the SRC inhibitor dasatinib on the metastatic phenotype of human prostate cancer cells. Clin Exp Metastasis 29:133–142

    Article  CAS  PubMed  Google Scholar 

  66. Talpaz M, Shah NP, Kantarjian H et al (2006) Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 354(24):2531–2541

    Article  CAS  PubMed  Google Scholar 

  67. O’Hare T, Shakespeare WC, Zhu X et al (2009) AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16:401–412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Li SQ, Cheuk AT, Shern JF et al (2013) Targeting wild-type and mutationally activated FGFR4 in rhabdomyosarcoma with the inhibitor ponatinib (AP24534). PLoS One 8:e76551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jin Y, Ging K, Li H et al (2014) Ponatinib efficiently kills imatinib-resistant chronic eosinophilic leukemia cells harboring gatekeeper mutant T674I FIP1L1-PDGFRalpha: roles of Mcl-1 and beta-catenin. Mol Cancer 13:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sathornsumetee S, Rich JN (2006) Vandetanib, a novel multitargeted kinase inhibitor, in cancer therapy. Drugs Today (Barc) 42:657–670

    Article  CAS  Google Scholar 

  71. Jia HY, Wu JX, Zhu XF et al (2009) ZD6474 inhibits Src kinase leading to apoptosis of imatinib-resistant K562 cells. Leuk Res 33:1512–1519

    Article  CAS  PubMed  Google Scholar 

  72. Dadu R, Hu MN, Grubbs EG et al (2015) Use of tyrosine kinase inhibitors for treatment of medullary thyroid carcinoma. Recent Results Cancer Res 204:227–249

    Article  PubMed  Google Scholar 

  73. Sano D, Kawakami M, Fujita K et al (2007) Antitumor effects of ZD6474 on head and neck squamous cell carcinoma. Oncol Rep 17:289–295

    CAS  PubMed  Google Scholar 

  74. Wilhelm SM, Adnane L, Newell P et al (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7:3129–3140

    Article  CAS  PubMed  Google Scholar 

  75. Zhang W, Konopleva M, Shi YX et al (2008) Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 100:184–198

    Article  CAS  PubMed  Google Scholar 

  76. Zhao W, Zhang T, Qu B et al (2011) Sorafenib induces apoptosis in HL60 cells by inhibiting Src kinase-mediated STAT3 phosphorylation. Anticancer Drugs 22:79–88

    Article  CAS  PubMed  Google Scholar 

  77. Keating GM, Santoro A (2009) Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs 69:223–240

    Article  CAS  PubMed  Google Scholar 

  78. Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    Article  CAS  PubMed  Google Scholar 

  79. Pitoia F, Jerkovich F (2016) Selective use of sorafenib in the treatment of thyroid cancer. Drug Des Devel Ther 10:1119–1131

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang W, Konopleva M, Ruvolo VR et al (2008) Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia 22:808–818

    Article  CAS  PubMed  Google Scholar 

  81. Sun L, Liang C, Shirazian S et al (2003) Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J Med Chem 46:1116–1119

    Article  CAS  PubMed  Google Scholar 

  82. O’Farrell AM, Abrams TJ, Yuen HA et al (2003) SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101:3597–3605

    Article  PubMed  CAS  Google Scholar 

  83. Hartmann JT, Kanz L (2008) Sunitinib and periodic hair depigmentation due to temporary c-KIT inhibition. Arch Dermatol 144:1525–1526

    Article  PubMed  Google Scholar 

  84. Demetri GD, van Oosterom AT, Garrett CR et al (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368:1329–1338

    Article  CAS  PubMed  Google Scholar 

  85. Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  CAS  PubMed  Google Scholar 

  86. Fiedler W, Kayser S, Kebenko M et al (2015) A phase I/II study of sunitinib and intensive chemotherapy in patients over 60 years of age with acute myeloid leukaemia and activating FLT3 mutations. Br J Haematol 169:694–700

    Article  CAS  PubMed  Google Scholar 

  87. Cao ZX, Liu JJ, Zheng RL et al (2012) SKLB1028, a novel oral multikinase inhibitor of EGFR, FLT3 and Abl, displays exceptional activity in models of FLT3-driven AML and considerable potency in models of CML harboring Abl mutants. Leukemia 26:1892–1895

    Article  CAS  PubMed  Google Scholar 

  88. Matsui J, Funahashi Y, Uenaka T et al (2008) Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res 14:5459–5465

    Article  CAS  PubMed  Google Scholar 

  89. Glen H, Boss D, Evans TR et al (2007) A phase I dose finding study of E7080 in patients (pts) with advanced malignancies. J Clin Oncol 25:14073a

    Google Scholar 

  90. Ferrari SM, Fallahi P, Politti U et al (2015) Molecular targeted therapies of aggressive thyroid cancer. Front Endocrinol (Lausanne) 6:176

    Google Scholar 

  91. Motzer RJ, Hutson TE, Glen H et al (2015) Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 16:1473–1482

    Article  CAS  PubMed  Google Scholar 

  92. Cripe L, McGuire W, Wertheim M et al (2007) Integrated report of the phase 2 experience with XL999 administered IV to patients (pts) with NSCLC, renal cell CA (RCC), metastatic colorectal CA (CRC), recurrent ovarian CA, acute myelogenous leaukemia (AML), and multiple myeloma (MM). J Clin Oncol 25(18S):3591a

    Google Scholar 

  93. Sansone P, Bromberg J (2012) Targeting the interleukin-6/Jak/Stat pathway in human malignancies. J Clin Oncol 30:1005–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tanaka T, Narazaki M, Kishimoto T (2012) Therapeutic targeting of the interleukin-6 receptor. Annu Rev Pharmacol Toxicol 52:199–219

    Article  CAS  PubMed  Google Scholar 

  95. Nishimoto N, Kishimoto T (2008) Humanized antihuman IL-6 receptor antibody, tocilizumab. Handb Exp Pharmacol 181:151–160

    Article  CAS  PubMed  Google Scholar 

  96. Shinriki S, Jono H, Ota K et al (2009) Humanized anti-interleukin-6 receptor antibody suppresses tumor angiogenesis and in vivo growth of human oral squamous cell carcinoma. Clin Cancer Res 15:5426–5434

    Article  CAS  PubMed  Google Scholar 

  97. Jiang XP, Yang DC, Elliott RL et al (2011) Down-regulation of expression of interleukin-6 and its receptor results in growth inhibition of MCF-7 breast cancer cells. Anticancer Res 31:2899–2906

    CAS  PubMed  Google Scholar 

  98. Wang P, Farren T, Agrawal SG (2013) Tocilizumab overcomes chemo-resistance of CLL cells. Blood 122:5305

    Google Scholar 

  99. Kim NH, Kim SK, Kim DS et al (2015) Anti-proliferative action of IL-6R-targeted antibody tocilizumab for non-small cell lung cancer cells. Oncol Lett 9:2283–2288

    PubMed  PubMed Central  Google Scholar 

  100. Chen R, Chen B (2015) Siltuximab (CNTO 328): a promising option for human malignancies. Drug Des Devel Ther 9:3455–3458

    Article  PubMed  PubMed Central  Google Scholar 

  101. Song L, Smith MA, Doshi P et al (2014) Antitumor efficacy of the anti-interleukin-6 (IL-6) antibody siltuximab in mouse xenograft models of lung cancer. J Thorac Oncol 9:974–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kroon P, Berry PA, Stower MJ et al (2013) JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res 73:5288–5298

    Article  CAS  PubMed  Google Scholar 

  103. Karkera J, Steiner H, Li W et al (2011) The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study. Prostate 71:1455–1465

    Article  CAS  PubMed  Google Scholar 

  104. Rossi JF, Négrier S, James ND et al (2010) A phase I/II study of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic renal cell cancer. Br J Cancer 103:1154–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Voorhees PM, Chen Q, Kuhn DJ et al (2007) Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma. Clin Cancer Res 13:6469–6478

    Article  CAS  PubMed  Google Scholar 

  106. Kurzrock R, Voorhees PM, Casper C et al (2013) A phase I, open-label study of siltuximab, an anti-IL-6 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma, multiple myeloma, or Castleman disease. Clin Cancer Res 19:3659–3670

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janani Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, J. (2016). Inhibitors of Upstream Inducers of STAT Activation. In: Ward, A. (eds) STAT Inhibitors in Cancer. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-42949-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42949-6_7

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-42947-2

  • Online ISBN: 978-3-319-42949-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics