Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

The European global navigation satellite system Galileo is designed as a self-standing satellite-based positioning system for worldwide service. It is independent from other systems with respect to satellite constellation, ground segment, and operation. Galileo is prepared to be compatible and interoperable with other radio navigation satellite systems, with global positioning system (GlossaryTerm

GPS

) as the main example. It uses the same physical principles as GPS, GLONASS, and others, that is radio signal-based ranging measurements from high-precision clocks as sources in orbit. The features of the first generation of Galileo comprise technological advances such as passive maser clock technology in orbit, plus modern system and signal concepts aligned to the planned and ongoing modernization of other systems. To the user, Galileo provides navigation signals on three frequencies E1, E6, and E5. The signals in E1 and E5 are coordinated with GPS L1 and L5, and both systems use equivalent modulation principles. This is expected to result in a benefit with respect to positioning accuracy, and in increased robustness of a positioning service derived from the combined use of multiple independent radio navigation systems. This chapter describes architecture and operations of Galileo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADEV:

Allan deviation

AltBOC:

alternative BOC

AOCS:

attitude and orbit control system

BGD:

broadcast group delay

BIPM:

Bureau International des Poids et Mesures

BOC:

binary offset carrier

BPSK:

binary phase-shift keying

CBOC:

composite binary offset carrier

CDMA:

code division multiple access

CNAV:

civil navigation message

CRC:

cyclic redundancy check

CS:

Commercial Service

DME:

distance measuring equipment

DOP:

dilution of precision

EGNOS:

European Geostationary Navigation Overlay Service

ESA:

European Space Agency

FEC:

forward error correction

FOC:

full operational capability

GCC:

Galileo Control Centre

GGTO:

GPS-to-Galileo time offset

GIOVE:

Galileo In-Orbit Validation Element

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GMS:

ground mission segment

GNSS:

global navigation satellite system

GPS:

Global Positioning System

GST:

Galileo System Time

HDOP:

horizontal dilution of precision

ICD:

interface control document

IGS:

International GNSS Service

IOD:

issue-of-data

IOT:

in-orbit test

IOV:

in-orbit validation

ITRF:

International Terrestrial Reference Frame

ITU:

International Telecommunication Union

LEOP:

launch and early orbit phase

MEO:

medium Earth orbit

OS:

Open Service

OSPF:

orbitography and synchronization processing facility

PDOP:

position dilution of precision

PHM:

passive hydrogen maser

PVT:

position, velocity and time

RAAN:

right ascension of ascending node

RAFS:

rubidium atomic frequency standard

RF:

radio frequency

RMS:

root mean square

SAR:

search and rescue

TT&C:

telemetry, tracking, and commanding

UERE:

user equivalent range error

UTC:

Coordinated Universal Time

References

  1. R. Zandbergen, S. Dinwiddy, J. Hahn, E. Breeuwer, D. Blonski: Galileo orbit selection, ION GNSS 2004, Long Beach (ION, Virginia 2004) pp. 616–623

    Google Scholar 

  2. R. Píriz, B. Martín-Peiró, M. Romay-Merino: The Galileo constellation design: A systematic approach, ION GNSS 2005, Long Beach (ION, Virginia 2005) pp. 1296–1306

    Google Scholar 

  3. D. Blonski: Galileo IOV and first results, Proc. ENC 2013, Vienna (Austrian Inst. of Navigation, Vienna 2013)

    Google Scholar 

  4. D. Blonski: Performance Extrapolation to FOC and outlook to Galileo early services, Proc. ENC 2014, Rotterdam (Netherlands Institute of Navigation, Rotterdam 2014)

    Google Scholar 

  5. D.A. Vallado: Fundamentals of Astrodynamics and Applications (Space Technology Library), 4th edn. (Microcosm, California 2013)

    Google Scholar 

  6. D. Navarro-Reyes, A. Notarantonio, G. Taini: Galileo constellation: Evaluation of station keeping strategies, 21st Int. Symp. Space Flight Dynamics (ISSFD), Toulouse (CNES, Toulouse 2009)

    Google Scholar 

  7. R.B. Langley: Dilution of precision, GPS World 10(5), 52–59 (1999)

    Google Scholar 

  8. Specification for Cospas-Sarsat 406 MHz Distress Beacons, C/S_T.001, Issue 3, Revision 16, December 2015, Cospas-Sarsat

    Google Scholar 

  9. Description of the 406 MHz Payload Used in the Cospas-Sarsat MEOSAR System, C/S_T.016, Issue 1, Revision 1, December 2015, Cospas-Sarsat

    Google Scholar 

  10. Cospas-Sarsat MEOLUT Performance Specification and Design Guidelines, C/S_T.019, Issue 1, December 2015, Cospas-Sarsat

    Google Scholar 

  11. European GNSS (Galileo) Open Service Signal In Space Interface Control Document, OS SIS ICD, Iss. 1.2, Nov. 2015 (European Union 2015)

    Google Scholar 

  12. L. Ries, J.-L. Issler, O. Julien, C. Macabiau: Method of Reception and Receiver For a Radio Navigation Signal Modulated by a CBOC Spread Wave Form, Patents US8094071, EP2030039A1 (Centre National d’Études Spatiales 2012)

    Google Scholar 

  13. O. Julien, C. Macabiau, L. Ries, J.-L. Issler: 1-Bit processing of composite BOC (CBOC) signals and extension to time-multiplexed BOC (TMBOC) signals, ION NTM 2007, San Diego (ION, Virginia 2007) pp. 227–239

    Google Scholar 

  14. A. De Latour, G. Artaud, L. Ries, F. Legrand, M. Sihrener: New BPSK, BOC and MBOC tracking structures, ION ITM, Anaheim (ION, Virginia 2009) pp. 396–405

    Google Scholar 

  15. L. Ries, L. Legrand, L. Lestarquit, W. Vigneau, J.-L. Issler: Tracking and multipath performance assessments of BOC signals using a bit level signal processing simulator, Proc. ION GPS 2003, Portland (ION, Virginia 2003) pp. 1996–2010

    Google Scholar 

  16. M. Soellner, P. Erhard: Comparison of AWGN tracking accuracy for alternative-BOC, complex-LOC and complex-BOC modulation options in Galileo E5 band, Proc. ENC GNSS 2003, Graz (Austrian Institute of Navigation, Graz 2003)

    Google Scholar 

  17. L. Lestarquit, G. Artaud, J.-L. Issler: AltBOC for dummies or everything you always wanted to know about AltBOC, Proc. ION GNSS, Savannah (ION, Virginia 2008) pp. 961–970

    Google Scholar 

  18. European GNSS (Galileo) Open Service Ionospheric Correction Algorithm for Galileo Single Frequency Users, Iss. 1.2, Sep. 2016 (European Commission 2016)

    Google Scholar 

  19. I. Fernández-Hernández, I. Rodríguez, G. Tobías, E. Carbonell, G. Seco-Granados, J. Simón, R. Blasi: The Galileo commercial service: Current status and prospects, Inside GNSS 10(1), 38–48 (2015)

    Google Scholar 

  20. J. Saastamoinen: Atmospheric correction for the troposphere and the stratosphere in radio ranging satellites. In: The Use of Artificial Satellites for Geodesy, Geophys. Monogr., Vol. 15, ed. by S.W. Henriksen, A. Mancini, B.H. Chovitz (AGU, Washington 1972) pp. 247–251

    Google Scholar 

  21. R. Orus-Perez, R. Prieto-Cerdeira, B. Arbesser-Rastburg: The Galileo single-frequency ionospheric correction and positioning observed near the solar cycle 24 maximum, 4th Int. Colloq. Sci. Fundam. Asp. Galileo Program., Prague (ESA, Noordwijk 2013)

    Google Scholar 

  22. R. Prieto-Cerdeira, S. Binda, M. Crisci, I. Hidalgo, D. Rodriguez, V. Borrel, J. Giraud: Ionospheric propagation activities during GIOVE Mission experimentation, 4th Eur. Conf. Antennas Propag. (EuCAP), Barcelona (IEEE, 2010) pp. 1–6

    Google Scholar 

  23. A. Martellucci, R. Prieto-Cerdeira: Review of tropospheric, ionospheric and multipath data and models for Global Navigation Satellite Systems, 3rd Eur. Conf. Antennas Propag. (EuCAP), Berlin (IEEE, 2009)

    Google Scholar 

  24. E. Breeuwer, S. Binda, G. Lopez-Risueno, D. Blonski, F. Gonzalez Martinez, A. Mudrak, R. Prieto-Cerdeira, I. Stojkovic, J. Hahn, M. Falcone: Galileo works, Inside GNSS 8(2), 60–66 (2013)

    Google Scholar 

  25. R. Prieto-Cerdeira, R. Orus-Perez, E. Breeuwer, R. Lucas-Rodriguez, M. Falcone: Performance of the Galileo single-frequency ionospheric correction during in-orbit validation, GPS World 25(6), 53–58 (2014)

    Google Scholar 

  26. M. Falcone, S. Binda, E. Breeuwer, J. Hahn, E. Spinelli, F. Gonzalez, G. Lopez Risueno, P. Giordano, R. Swinden, G. Galluzzo, A. Hedquist: Galileo on its own: First position fix, Inside GNSS 8(2), 50–71 (2013)

    Google Scholar 

  27. S. Binda: Galileo timing performance update, plenary presentation, Proc. ENC 2014, Rotterdam (Netherlands Institute of Navigation, Rotterdam 2014)

    Google Scholar 

  28. Standard-Frequency and Time-Signal Emissions, ITU-R Recommendation TF.460-6 (International Telecommunication Union, Radio-communication Bureau, Geneva, 2002) pp. 460–466

    Google Scholar 

  29. R. Píriz, Á.M. García, G. Tobías, V. Fernández, P. Tavella, I. Sesia, G. Cerretto, J. Hahn: GNSS interoperability: Offset between reference time scales and timing biases, Metrologia 45(6), 87–102 (2008)

    Article  Google Scholar 

  30. P. Defraigne, W. Aerts, G. Cerretto, G. Signorile, E. Cantoni, I. Sesia, P. Tavella, A. Cernigliaro, A. Samperi, J.M. Sleewaegen: Advances on the use of Galileo signals in time metrology: Calibrated time transfer and estimation of UTC and GGTO using a combined commercial GPS-Galileo receiver, Proc. 45th PTTI Syst. Appl. Meet., Bellevue (ION, Virginia 2013) pp. 256–262

    Google Scholar 

  31. J.H. Hahn, E.D. Powers: Implementation of the GPS to Galileo time offset (GGTO), IEEE Int. Freq. Control Symp. Expo., Vancouver (IEEE, 2005)

    Google Scholar 

  32. Galileo navigation program: FOC (Full Operational Capability), eoPortal, ESA, 2016, https://directory.eoportal.org/web/eoportal/satellite-missions/g/galileo-foc

  33. K. Pauly: Galileo FOC – Design, production, early operations after 1st launch, and project status, IAC-14-B2.2.1, 65th Int. Astronaut. Cong. (IAC), Toronto (IAF, Paris, France 2014) pp. 1–4

    Google Scholar 

  34. A. Konrad, H.-D. Fischer, C. Müller, W. Oesterlin: Attitude and orbit control system for Galileo IOV, Proc. 17th IFAC Symp. Autom. Control Aerosp., Toulouse, ed. by H. Siguerdidjane (IFAC, Laxenburg, Austria 2007) pp. 25–30

    Google Scholar 

  35. G.T.A. Burbidge: Development of the navigation payload for the Galileo in-orbit validation (IOV) phase, IGNSS Symp. 2007, Sydney (IGNSS Society, Tweed Heads 2007)

    Google Scholar 

  36. D. Felbach, D. Heimbuerger, P. Herre, P. Rastetter: Galileo payload 10.23 MHz master clock generation with a clock monitoring and control unit (CMCU), Proc. IEEE FCS and 17th EFTF 2003, Tampa (IEEE, 2003) pp. 583–586 doi:10.1109/FREQ.2003.1275156

    Google Scholar 

  37. D. Felbach, F. Soualle, D. L. Stopfkuchen, A. Zenzinger: Clock monitoring and control units for navigation satellites, IEEE FCS 2010, Newport Beach (IEEE, 2010) pp. 474–479 doi:10.1109/FREQ.2010.5556283

    Google Scholar 

  38. A. Montesano, C. Montesano, R. Caballero, M. Naranjo, F. Monjas, L.E. Cuesta, P. Zorrilla, L. Martinez: Galileo system navigation antenna for global positioning, Proc. 2nd EuCAP, Edinburgh (IET, Stevenage 2007) pp. 1–6

    Google Scholar 

  39. P. Valle, A. Netti, M. Zolesi, R. Mizzoni, M. Bandinelli, R. Guidi: Efficient dual-band planar array suitable to Galileo, Proc. 1st EUCAP, Nice (IEEE, 2006) pp. 1–7 doi:1109/EUCAP.2006.4584868

    Google Scholar 

  40. F. Paggi, I. Stojkovic, D. Oskam, E. Breeuwer, M. Gotta, M. Marinelli: SAR/Galileo IOV forward link test campaign results, Proc. ENC-GNSS 2014, Rotterdam (Netherlands Institute of Navigation, Rotterdam 2014)

    Google Scholar 

  41. F. Paggi, I. Stojkovic, A. Postinghel, D. Ratto, E. Breeuwer, M. Gotta: SAR/Galileo IOV return link test campaign results, Proc. ENC-GNSS 2014, Rotterdam (Netherlands Institute of Navigation, Rotterdam 2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank their colleagues in the Galileo Project Office and all teams at Industry contributing to the European project for the Global Navigation Satellite System Galileo. Without their continuous efforts Galileo would not have come into existence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Falcone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Falcone, M., Hahn, J., Burger, T. (2017). Galileo. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_9

Download citation

Publish with us

Policies and ethics