Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

This chapter discusses the use of properties of global navigation satellite system (GlossaryTerm

GNSS

) signals after their reflection on the Earth’s surface. Global navigations satellite system reflectometry (or GNSS-R) is a multistatic radar that uses the GNSS constellations to extract information on the properties of the reflecting surfaces. Experiments have demonstrated that useful information can be extracted from such reflected signals. GNSS-R instruments have been installed in ground and coastal platforms, aircraft, stratospheric balloons, and spacecrafts. As a natural consequence it has been proposed by space agencies for the deployment of dedicated space missions. In the first part of this chapter the properties of the GNSS reflected signals on different components of the Earth’s surface are discussed, and the technical principles sustaining different types of GNSS-R instruments are presented. The second part of this chapter presents methods to retrieve geophysical information from the GNSS-R signals, results obtained in different experiments and plans for future space missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DDM:

delay-Doppler-map

EIRP:

effective isotropic radiated power

ESA:

European Space Agency

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS:

global navigation satellite system

GPS:

Global Positioning System

IEEE:

Institute of Electrical and Electronics Engineers

IGS:

International GNSS Service

ISS:

International Space Station

LEO:

low Earth orbit

LHCP:

left-hand circular polarized

MSS:

mean squared slope

NASA:

National Aeronautics and Space Administration

PBO:

plate boundary observatory

PDF:

probability density function

PRN:

pseudo-random noise

RF:

radio frequency

RHCP:

right-hand circular polarized

RMS:

root mean square

RO:

radio occultation

SNR:

signal-to-noise ratio

References

  1. M. Martín-Neira: A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry, ESA Journal 17, 331–355 (1993)

    Google Scholar 

  2. J.L. Garrison, S.J. Katzberg, M.I. Hill: Effect of sea roughness on bistatically scattered range coded signals from the Global Positioning System, Geophys. Res. Lett. 25(13), 2257–2260 (1998)

    Article  Google Scholar 

  3. S. Jin, E. Cardellach, F. Xie: GNSS Remote Sensing (Springer, Dordrecht 2014)

    Book  Google Scholar 

  4. M. Born, E. Wolf: Principles of Optics, 7th edn. (Cambridge Univ. Press, Cambridge 1999)

    Book  Google Scholar 

  5. A.R. Thompson, J.M. Moran, G.W. Swenson: Interferometry and Synthesis in Radio Astronomy, 2nd edn. (Wiley-VCH, New York 2001)

    Book  Google Scholar 

  6. B.W. Parkinson, J.J. Spilker: Global Positioning System: Theory and Applications (AIAA, Washington 1996)

    Book  Google Scholar 

  7. P.F. MacDoran: Satellite emission radio interferometric Earth surveying series – GPS geodetic system, Bull. Géod. 53(2), 117–137 (1979)

    Article  Google Scholar 

  8. J.D. Romney: Theory of correlation in VLBI. In: Very Long Baseline Interferometry and the VLBA, ed. by J.A. Zensus, P.J. Diamond, P.J. Napier (Astronomical Society of the Pacific, San Francisco 1995) pp. 17–35

    Google Scholar 

  9. R. Bracewell: The Fourier Transform and Its Applications (McGraw-Hill, New York 1965)

    Google Scholar 

  10. A.R. Whitney, R. Cappallo, W. Aldrich, B. Anderson, A. Bos, J. Casse, J. Goodman, S. Parsley, S. Pogrebenko, R. Schilizzi, D. Smythe: Mark 4 VLBI correlator: Architecture and algorithms, Radio Sci. 39(RS1007), 1–24 (2004)

    Google Scholar 

  11. K. S. Andrews, A. Argueta, N. E. Lay, M. Lyubarev, E. H. Sigman, M. Srinivasan, A. Tkacenko: Reconfigurable Wideband Ground Receiver Hardware Description and Laboratory Performance, IPN Progress Report 42-180 (Jet Propulsion Laboratory, Pasadena 2010)

    Google Scholar 

  12. E. Cardellach, A. Rius, M. Martín-Neira, F. Fabra, O. Nogués-Correig, S. Ribó, J. Kainulainen, A. Camps, S.D. Addio: Consolidating the precision of interferometric GNSS-R ocean altimetry using airborne experimental data, IEEE Trans. Geosci. Remote Sens. 52(8), 4992–5004 (2014)

    Article  Google Scholar 

  13. P.Z. Peebles: Radar Principles (Wiley, Hoboken 2004)

    Google Scholar 

  14. B.C. Barker, J.W. Betz, J.E. Clark, J.T. Correia, J.T. Gillis, S. Lazar, K.A. Rehborn, J.R. Straton: Overview of the GPS M code signal, Proc. ION NTM 2000, Anaheim (ION, Virginia 2000) pp. 542–549

    Google Scholar 

  15. F.T. Ulaby, R.K. Moore, A.K. Fung: Microwave Remote Sensing: Active and Passive, Vol. II: Radar Remote Sensing and Surface Scattering and Emission Theory (Addison-Wesley, Norwood 1982)

    Google Scholar 

  16. V.U. Zavorotny, A.G. Voronovich: Scattering of GPS signals from the ocean with wind remote sensing application, IEEE Geosci. Remote. Sens. 38(2), 951–964 (2000)

    Article  Google Scholar 

  17. M. Martín-Neira, S. D’Addio, C. Buck, N. Floury, R. Prieto-Cerdeira: The PARIS ocean altimeter in-orbit demonstrator, IEEE Geosci. Remote. Sens. 49(6), 2209–2237 (2011)

    Article  Google Scholar 

  18. C. Zuffada, T. Elfouhaily, S. Lowe: Sensitivity analysis of wind vector measurements from ocean reflected GPS signals, Remote Sens. Environ. 88(3), 341–350 (2003)

    Article  Google Scholar 

  19. E. Valencia, A. Camps, J.F. Marchan-Hernandez, N. Rodriguez-Alvarez, I. Ramos-Perez, X. Bosch-Lluis: Experimental determination of the sea correlation time using GNSS-R coherent data, IEEE Geosci. Remote Sens. Lett. 7(4), 675–679 (2010)

    Article  Google Scholar 

  20. GOLD_RTR MINING web server for GNSS-R experimental data and related information (Institut de Ciències de l’Espai) http://www.ice.csic.es/research/gold_rtr_mining

  21. E. Cardellach, F. Fabra, O. Nogués-Correig, S. Oliveras, S. Ribó, A. Rius: GNSS-R ground based and airborne campaigns for ocean, land, ice, and snow techniques: Application to the GOLD-RTR data sets, Radio Sci. 46(RS0C04), 1–16 (2011)

    Google Scholar 

  22. S. T. Lowe, J. L. LaBrecque, C. Zuffada, L. J. Romans, L. E. Young, G. A. Hajj: First spaceborne observation of an Earth-reflected GPS signal, Radio Sci. 37(1), 7.1–7.28 (2002)

    Google Scholar 

  23. S. Gleason, S. Hodgart, Y. Sun, C. Gommenginger, S. Mackin, M. Adjrad, M. Unwin: Detection and processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing, IEEE Trans. Geosci. Remote Sens. 43(6), 1229–1241 (2005)

    Article  Google Scholar 

  24. S. Gleason: Remote Sensing of Ocean, Ice and Land Surfaces Using Bistatically Scattered GNSS Signals from Low Earth Orbit, Ph.D. Thesis (University of Surrey, Surrey 2006)

    Google Scholar 

  25. S. Gleason: Towards sea ice remote sensing with space detected GPS signals: Demonstration of technical feasibility and initial consistency check using low resolution sea ice information, Remote Sens. 2(8), 2017–2039 (2010)

    Article  Google Scholar 

  26. S. Gleason, S. Lowe, V. Zavorotny: Remote sensing using bistatic GNSS reflections. In: GNSS Applications and Methods, ed. by S. Gleason, D. Gebre-Egziabher (Artech House, Boston 2009) pp. 399–436

    Google Scholar 

  27. R. Stosius, G. Beyerle, A. Helm, A. Hoechner, J. Wickert: Simulation of space-borne tsunami detection using GNSS-reflectometry applied to tsunamis in the Indian Ocean, Nat. Hazards Earth Syst. Sci. 10, 1359–1372 (2010)

    Article  Google Scholar 

  28. P.Y. Le Traon, G. Dibarboure, G. Ruffini, E. Cardellach: Mesoscale ocean altimetry requirements and impact of GPS-R measurements for ocean mesoscale circulation mapping, Technical Note Extract from the PARIS-BETA ESTEC/ESA Study, eprint https://arxiv.org/abs/physics/0212068 (Starlab 2002)

  29. M. Martín-Neira, M. Caparrini, J. Font-Rosselló, S. Lannelongue, C.S. Vallmitjana: The PARIS concept: An experimental demonstration of sea surface altimetry using GPS reflected signals, IEEE Trans. Geosci. Remote Sens. 39(1), 142–149 (2001)

    Article  Google Scholar 

  30. A. Rius, O. Nogués-Correig, S. Ribó, E. Cardellach, S. Oliveras, E. Valencia, H. Park, J.M. Tarongí, A. Camps, H. van der Marel, R. van Bree, B. Altena, M. Martín-Neira: Altimetry with GNSS-R interferometry: First proof of concept experiment, GPS Solutions 16(2), 231–241 (2012)

    Article  Google Scholar 

  31. S.T. Lowe, C. Zuffada, Y. Chao, P. Kroger, L.E. Young, J.L. LaBrecque: 5-cm precision aircraft ocean altimetry using GPS reflections, Geophys. Res. Lett. 29(10), 13.1–13.4 (2002)

    Article  Google Scholar 

  32. A. Rius, E. Cardellach, M. Martín-Neira: Altimetric analysis of the sea surface GPS reflected signals, IEEE Trans. Geosci. Remote Sens. 48(4), 2119–2127 (2010)

    Article  Google Scholar 

  33. G. Hajj, C. Zuffada: Theoretical description of a bistatic system for ocean altimetry using the GPS signal, Radio Sci. 38(5), 10.1–10.19 (2003)

    Article  Google Scholar 

  34. S.T. Lowe, C. Zuffada, J. LaBrecque, M. Lough, J. Lerma: An aircraft ocean altimetry measurement using reflected GPS signals, Proc. IEEE IGARSS, Honolulu, ed. by T.I. Stein (2000) pp. 1–3

    Google Scholar 

  35. G. Ruffini, F. Soulat, M. Caparrini, O. Germain, M. Martín-Neira: The eddy experiment: Accurate GNSS-R Ocean altimetriy from low altitude aircraft, Geophys. Res. Lett. 31(L12306), 1–4 (2004)

    Google Scholar 

  36. A. Rius, F. Fabra, S. Ribó, J.C. Arco Fernandez, S. Oliveras, E. Cardellach, A. Camps, O. Nogués-Correig, J. Kainulainen, E. Rohue, M. Martín-Neira: PARIS interferometric technique proof of concept: Sea surface altimetry measurements, Proc. IEEE IGARSS, Munich (2012) pp. 7067–7070

    Google Scholar 

  37. S. D’Addio, M. Martín-Neira: Comparison of processing techniques for remote sensing of earth-exploiding reflected radio-navigation signals, Electron. Lett. 49(4), 292–293 (2013)

    Article  Google Scholar 

  38. C. Cox, W. Munk: Measurements of the roughness of the sea surface from photographs of the Sun’s glitter, J. Opt. Soc. Am. 44(11), 838–850 (1954)

    Article  Google Scholar 

  39. W.J. Pierson, L. Moskowitz: A proposed spectral form for fully developed wind seas based on the similarity theory of A. A. Kitaigorodskii, J. Geophys. Res. 69(24), 5181–5190 (1964)

    Article  Google Scholar 

  40. K. Hasselmann, T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Miller, D.J. Olbers, K. Richter, W. Sell, H. Walden: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogr. Z. A8(12), 95 (1973)

    Google Scholar 

  41. T. Elfouhaily, B. Chapron, K. Katsaros, D. Vandermark: A unified directional spectrum for long and short wind-driven waves, J. Geosphys. Res. 102(C7), 15781–15796 (1997)

    Article  Google Scholar 

  42. E. Cardellach: Sea Surface Determination Using GNSS Reflected Signals, Ph.D. Thesis (Universitat Politècnica de Catalunya, Barcelona 2002)

    Google Scholar 

  43. A. Komjathy, V. Zavorotny, P. Axelrad, G. Born, J. Garrison: GPS signal scattering from sea surface: Wind speed retrieval using experimental data and theoretical model, Remote Sens. Environ. 73(2), 162–174 (2000)

    Article  Google Scholar 

  44. E. Cardellach, G. Ruffini, D. Pino, A. Rius, A. Komjathy, J.L. Garrison: Mediterranean balloon experiment: Ocean wind speed sensing from the stratosphere using GPS reflections, Remote Sens. Environ. 88(3), 351–362 (2003)

    Article  Google Scholar 

  45. A. Komjathy, M. Armatys, D. Masters, P. Axelrad: Retrieval of ocean surface wind speed and wind direction using reflected GPS signals, J. Atmos. Ocean. Technol. 21(3), 515–526 (2004)

    Article  Google Scholar 

  46. M. Armatys: Estimation of Sea Surface Winds Using Reflected GPS Signals, Ph.D. Thesis (University of Colorado, Boulder 2001)

    Google Scholar 

  47. S.J. Katzberg, O. Torres, G. Ganoe: Calibration of reflected GPS for tropical storm wind speed retrievals, Geophys. Res. Lett. 33(L18602), 1–5 (2006)

    Google Scholar 

  48. S.J. Katzberg, J. Dunion, G.G. Ganoe: The use of reflected GPS signals to retrieve ocean surface wind speeds in tropical cyclones, Radio Sci. 48(4), 371–387 (2013)

    Article  Google Scholar 

  49. O. Germain, G. Ruffini, F. Soulat, M. Caparrini, B. Chapron, P. Silvestrin: The eddy experiment: GNSS-R speculometry for directional sea-roughness retrieval from low-altitude aircraft, Geophys. Res. Lett. 31(L21307), 1–4 (2004)

    Google Scholar 

  50. J.L. Garrison, A. Komjathy, V.U. Zavorotny, S.J. Katzberg: Wind speed measurement using forward scattered GPS signals, IEEE Geosci. Remote. Sens. 40(1), 50–65 (2002)

    Article  Google Scholar 

  51. T. Elfouhaily, D.R. Thompson, L. Linstrom: Delay-Doppler analysis of bistatically reflected signals from the ocean surface: Theory and application, IEEE Trans. Geosci. Remote Sens. 40(3), 560–573 (2002)

    Article  Google Scholar 

  52. O. Nogués-Correig, E. Cardellach Gali, J. Sanz Campderros, A. Rius: A GPS-reflections receiver that computes Doppler/delay maps in real time, IEEE Geosci. Remote. Sens. 45(1), 156–174 (2007)

    Article  Google Scholar 

  53. E. Cardellach, A. Rius: A new technique to sense non-Gaussian features of the sea surface from L-band bi-static GNSS reflections, Remote Sens. Environ. 112(6), 2927–2937 (2008)

    Article  Google Scholar 

  54. Y. Kerr, J. Font, P. Waldteufel, M. Berger: The second of ESA’s opportunity missions: The soil moisture and ocean salinity mission – SMOS, ESA Earth Obs. Q. 66, 18–25 (2000)

    Google Scholar 

  55. D.M. Le Vine, F. Pellerano, G.S.E. Lagerloef, S. Yueh, R. Colomb: Aquarius: A mission to monitor sea surface salinity from space, Proc. IEEE MicroRad, SanJuan (2006) pp. 87–90

    Google Scholar 

  56. E. Cardellach, S. Ribó, A. Rius: Technical Note on Polarimetric Phase Interferometry (POPI), eprint https://arxiv.org/abs/physics/0606099 (IEEC-CSIC 2006)

  57. G. Beyerle: Carrier phase wind-up in GPS reflectometry, GPS Solutions 13(3), 191–198 (2009)

    Article  Google Scholar 

  58. K.M. Larson, E. Gutmann, V. Zavorotny, J. Braun, M. Williams, F. Nievinski: Can we measure snow depth with GPS receivers?, Geophys. Res. Lett. 36(L17502), 1–5 (2009)

    Google Scholar 

  59. GPS Reflections Research Group: PBO H\({}_{2}\)O Data Portal – Using GPS reflection data from NSF’s Plate Boundary Observatory (PBO) to study the water cycle (Univ. of Colorado). http://xenon.colorado.edu/portal

  60. K.M. Larson, F.G. Nievinski: GPS snow sensing: Results from the EarthScope Plate Boundary Observatory, GPS Solutions 17(1), 41–52 (2013)

    Article  Google Scholar 

  61. F.G. Nievinski, K.M. Larson: Inverse modeling of GPS multipath for snow depth estimation – Part I: Formulation and simulations, IEEE Trans. Geosci. Remote Sens. 52(10), 6555–6563 (2014)

    Article  Google Scholar 

  62. F.G. Nievinski, K.M. Larson: Inverse modeling of GPS multipath for snow depth estimation – Part II: Application and validation, IEEE Trans. Geosci. Remote Sens. 52(10), 6564–6573 (2014)

    Article  Google Scholar 

  63. K. Boniface, J. Braun, J. McCreight, S. Morin, F.G. Nievinski, A. Walpersdorf: GNSS interferometric reflectometry for snow depth measurements: Comparison to SNODAS model in the western US and first results in the French Alps, Proc. Space Reflecto 2013, Brest (Univ. du Littoral, Côte d’Opale 2013) pp. 1–2

    Google Scholar 

  64. N. Rodriguez-Alvarez, A. Aguasca, E. Valencia, X. Bosch-Lluis, A. Camps, I. Ramos-Perez, H. Park, M. Vall-llosera: Snow thickness monitoring using GNSS measurements, IEEE Geosci. Remote Sens. Lett. 9(6), 1109–1113 (2012)

    Article  Google Scholar 

  65. A. Komjathy, J. Maslanik, V.U. Zavorotny, P. Axelrad, S.J. Katzberg: Sea ice remote sensing using surface reflected GPS signals, Proc. IEEE IGARSS, Honolulu, ed. by T.I. Stein (2000) pp. 2855–2857

    Google Scholar 

  66. M. Belmonte Rivas, J.A. Maslanik, P. Axelrad: Bistatic scattering of GPS signals off arctic sea ice, IEEE Trans. Geosci. Remote Sens. 48(3), 1548–1553 (2010)

    Article  Google Scholar 

  67. F. Fabra: GNSS-R as a Source of Opportunity for Remote Sensing of the Cryosphere, Ph.D. Thesis (Universitat Politècnica de Catalunya, Barcelona 2013)

    Google Scholar 

  68. M. Semmling, G. Beyerle, R. Stosius, G. Dick, J. Wickert, F. Fabra, E. Cardellach, S. Ribó, A. Rius, A. Helm: Detection of arctic ocean tides using interferometric GNSS-R signals, Geophys. Res. Lett. 38(L04103), 4 (2011)

    Google Scholar 

  69. F. Fabra, E. Cardellach, A. Rius, S. Oliveras, O. Nogués-Correig, M. Belmonte-Rivas, M. Semmling, S. D’Addio: Phase altimetry with dual polarization GNSS-R over sea-ice, IEEE Trans. Geosci. Remote Sens. 50(6), 2112–2121 (2011)

    Article  Google Scholar 

  70. E. Cardellach, C.O. Ao, M.G.A. de la Torre-Juárez: Hajj: Carrier phase delay altimetry with GPS-reflection/occultation interferometry from low Earth orbiters, Geophys. Res. Lett. 31(L10402), 1–4 (2004)

    Google Scholar 

  71. A. Helm, H.-U. Wetzel, W. Michajljow, C. Mayer, A. Lambrecht, W. Hagg, A. Dudashvili, G. Beyerle, M. Rothacher: Using reflected GPS signals for the observation of the second 2005 Lake Merzbacher GLOF event, Proc. Int. Workshop Glacial Lake Outburst Floods Central Asia, Bishkek (Central-Asian Institute of Applied Geosciences, Bishkek 2008)

    Google Scholar 

  72. M. Wiehl, B. Legresy, R. Dietrich: Potential of reflected GNSS signals for ice sheet remote sensing, Prog. Electromagn. Res. 40, 177–205 (2003)

    Article  Google Scholar 

  73. E. Cardellach, F. Fabra, A. Rius, S. Pettinato, S. D’Addio: Characterization of dry-snow sub-structure using GNSS reflected signals, Remote Sens. Environ. 124, 122–134 (2012)

    Article  Google Scholar 

  74. K.M. Larson, J.J. Braun, E.E. Small, V.U. Zavorotny, E.D. Gutmann, A.L. Bilich: GPS multipath and its relation to near-surface soil moisture content, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3(1), 91–99 (2010)

    Article  Google Scholar 

  75. N. Rodriguez-Alvarez, A. Camps, M. Vall-llossera, X. Bosch-Lluis, A. Monerris, I. Ramos-Perez, E. Valencia, J.F. Marchan-Hernandez, J. Martinez-Fernandez, G. Baroncini-Turricchia, C. Pérez-Gutiérrez, N. Sánchez: Land geophysical parameters retrieval using the interference pattern GNSS-R technique, IEEE Trans. Geosci. Remote Sens. 49(1), 71–84 (2011)

    Article  Google Scholar 

  76. D. Masters, P. Axelrad, S. Katzberg: Initial results of land-reflected GPS bistatic radar measurements in SMEX02, Remote Sens. Environ. 92, 507–520 (2004)

    Article  Google Scholar 

  77. S.J. Katzberg, O. Torres, M.S. Grant, D. Masters: Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: Results from SMEX02, Remote Sens. Environ. 100, 17–28 (2005)

    Article  Google Scholar 

  78. N. Pierdicca, L. Guerriero, R. Giusto, M. Brogioni, A. Egido, N. Floury: GNSS reflections from bare and vegetated soils: Experimental validation of and end-to-end simulator, Proc. IEEE IGARSS, Vancouver (2011) pp. 4371–4374

    Google Scholar 

  79. K.M. Larson, E.E. Small, E. Gutmann, A. Bilich, P. Axelrad, J. Braun: Using GPS multipath to measure soil moisture fluctuations: Initial results, GPS Solutions 12, 173–177 (2008)

    Article  Google Scholar 

  80. E.E. Small, K.M. Larson, J.J. Braun: Sensing vegetation growth with reflected GPS signals, Geophys. Res. Lett. 37(L12401), 1–5 (2010)

    Google Scholar 

  81. G. Beyerle, K. Hocke, J. Wickert, T. Schmidt, C. Reigber: GPS radio occultations with CHAMP: A radioholographic analysis of GPS signal propagation in the troposphere and surface reflections, J. Geophys. Res. 107(D24), 27.1–27.14 (2002)

    Article  Google Scholar 

  82. G. Foti, C. Gommenginger, P. Jales, M. Unwin, A. Shaw, C. Robertson, J. Roselló: Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission, Geophys. Res. Lett. 42(13), 5435–5441 (2015)

    Article  Google Scholar 

  83. H. Carreno-Luengo, A. Camps, I. Perez-Ramos, G. Forte, R. Diez R. Onrubia: \({}^{3}\)CAT-2: A P(Y) and C/A GNSS-R experimental nano-satellite mission, Proc. IEEE IGARSS, Melbourne (2013) pp. 843–846

    Google Scholar 

  84. C.S. Ruf, S. Gleason, Z. Jelenak, S. Katzberg, A. Ridley, R. Rose, J. Scherrer, V. Zavorotny: The CYGNSS nanosatellite constellation hurricane mission, Proc. IEEE IGARSS, Munich (2012) pp. 214–216

    Google Scholar 

  85. J. Wickert, G. Beyerle, E. Cardellach, C. Förste, T. Gruber, A. Helm, M.P. Hess, P. Høeg, N. Jakowski, O. Montenbruck, A. Rius, M. Rothacher, C.K. Shum, C. Zuffada: GNSS REflectometry, Radio Occultation and Scatterometry onboard ISS for long-term monitoring of climate observations using innovative space geodetic techniques on-board the International Space Station. Proposal in response to Call: ESA Research Announcement for ISS Experiments relevant to study of Global Climate Change (GFZ, Potsdam 2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Spanish grant AGORA: Advanced GNSS and other signals of Opportunity Reflectometry for Accurate Climate Monitoring (ESP2015-70014-C2-R). The authors participate in the EUMETSAT ROM SAF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rius, A., Cardellach, E. (2017). Reflectometry. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_40

Download citation

Publish with us

Policies and ethics