Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

This chapter describes the concepts of differential global navigation satellite system (GlossaryTerm

DGNSS

) positioning focusing on practical details given that the fundamental concepts have been covered in prior chapters. The chapter starts with a review of the general concepts of DGNSS, including a quantitative discussion on the biases in DGNSS measurements. The next section focusses on code-based DGNSS positioning, presenting an overview of DGNSS services as well as a brief discussion on the format and latency of DGNSS corrections. A significant part of this chapter is devoted to carrier-phase dominated DGNSS, or real-time kinematic (GlossaryTerm

RTK

) positioning. Besides a theoretical consideration that includes the Russian Global Navigation Satellite System (GlossaryTerm

GLONASS

) and multi-GNSS RTK, the section provides examples of RTK positioning performance that are obtained in practice. The last section details on network RTK, which is an extension of the standard RTK technique to cover longer distances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDS:

BeiDou Navigation Satellite System

CDMA:

code division multiple access

DGNSS:

differential GNSS

EGNOS:

European Geostationary Navigation Overlay Service

FDMA:

frequency division multiple access

GAGAN:

GPS-aided GEO Augmented Navigation

GBAS:

ground-based augmentation system

GEO:

geostationary Earth orbit

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS:

global navigation satellite system

GPS:

Global Positioning System

GPT:

global pressure and temperature (model)

IGS:

International GNSS Service

IGSO:

inclined geo-synchronous orbit

LAMBDA:

least-squares ambiguity decorrelation adjustment

MEO:

medium Earth orbit

MSAS:

Multi-Function Satellite Augmentation System

NMEA:

National Marine Electronics Association

PPP:

precise point positioning

PRC:

pseudorange correction

QZSS:

Quasi-Zenith Satellite System

RINEX:

receiver independent exchange (format)

RRC:

range-rate correction

RTCM:

Radio Technical Commission for Maritime Services

RTK:

real-time kinematic

SA:

selective availability

SBAS:

satellite-based augmentation system

SPP:

single point positioning

TEC:

total electron content

UTC:

Coordinated Universal Time

VHF:

very high frequency

VTEC:

vertical total electron content

WAAS:

Wide Area Augmentation System

ZTD:

zenith troposphere delay

References

  1. Y. Georgiadou, K.D. Doucet: The issue of selective availability, GPS World 1(5), 53–56 (1990)

    Google Scholar 

  2. F. van Graas, M.S. Braasch: Selective availabity. In: Global Positioning System: Theory and Applications, Vol. 1, ed. by B. Parkinson, J.J. Spilker Jr. (AIAA, Washington 1995) pp. 601–621

    Google Scholar 

  3. J.K. Gupta, L. Singh: Long term ionospheric electron content variations over Delhi, Ann. Geophysicae 18, 1635–1644 (2001)

    Article  Google Scholar 

  4. S. Skone, S.M. Shrestha: Limitations in DGPS positioning accuracies at low latitudes during solar maximum, Geophys. Res. Lett. 29(10), 81/1–81/4 (2002)

    Article  Google Scholar 

  5. R. Warnant: Influence of the ionospheric refraction on the repeatability of distances computed by GPS, Proc. ION GPS-97, Kansas City (ION, Virginia 1997) pp. 217–224

    Google Scholar 

  6. A.J. Coster, M.M. Pratt, B.P. Burke, P.N. Misra: Characterization of atmospheric propagation errors for DGPS, Proc. ION AM-98, Denver (ION, Virginia 1998) pp. 327–336

    Google Scholar 

  7. H.B. Vo, J.C. Foster: Quantitative investigation of ionospheric density gradients at mid latitudes, J. Geophys. Res. 106, 21555–21563 (2001)

    Article  Google Scholar 

  8. L. Wanninger: Effects of the equatorial ionosphere on GPS, GPS World 7(4), 48–54 (1993)

    Google Scholar 

  9. S. Skone, M. El-Gizawy, S.M. Shrestha: Limitations in GPS positioning accuracies and receiver tracking performance during solar maximum, Proc. Kinem. Syst. Geod., Geom. Navig. (KIS2001), Banff (University of Calgary, Calgary 2001) pp. 129–143

    Google Scholar 

  10. J. Saastamoinen: Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, Geophys. Monogr. Ser. 15, 247–251 (1972)

    Google Scholar 

  11. F. Kleijer: Troposphere Modeling and Filtering for Precise GPS Leveling, Ph.D. Thesis (Netherlands Geodetic Commission, Delft 2004)

    Google Scholar 

  12. H.B. Baby, P. Gole, J. Lavergnat: A model for the tropospheric excess path length of radio waves from surface meteorological measurements, Radio Sci. 23(6), 1023–1038 (1988)

    Article  Google Scholar 

  13. J.J. Spilker Jr.: Tropospheric effects on GPS. In: Global Positioning System: Theory and Applications, Vol. 1, ed. by B. Parkinson, J.J. Spilker Jr. (AIAA, Washington 1995) pp. 517–546

    Google Scholar 

  14. P. Bona, C. Tiberius: An experimental comparison of noise characteristics of seven high-end dual frequency GPS receiver sets, Proc. IEEE Position Location Navig. Symp., San Diego (2000) pp. 237–244

    Google Scholar 

  15. S.H. Byun, G.A. Hajj, L.E. Young: GPS signal multipath: A software simulator, GPS World 13(7), 40–49 (2002)

    Google Scholar 

  16. J. Raquet, G. Lachapelle: Determination and reduction of GPS reference station multipath using multiple receivers, Proc. ION GPS-96, Kansas City (ION, Virginia 1996) pp. 673–681

    Google Scholar 

  17. M.S. Braasch, A.J. van Dierendonck: GPS receiver architectures and measurements, Proc. IEEE 87(1), 48–64 (1999)

    Article  Google Scholar 

  18. P. Bona: Accuracy of GPS phase and code observations in practice, Acta Geod. Geophys. Hung. 35(4), 433–451 (2000)

    Google Scholar 

  19. P.F. de Bakker, C.C.J.M. Tiberius, H. van der Marel, R.J.P. van Bree: Short and zero baseline analysis of GPS L1 C/A, L5Q, GIOVE E1B and E5aQ signals, GPS Solutions 16(1), 53–64 (2012)

    Article  Google Scholar 

  20. T.H. Diessongo, T. Schüler, S. Junker: Precise position determination using a Galileo E5 single-frequency receiver, GPS Solutions 7(4), 230–240 (2013)

    Google Scholar 

  21. D. Odijk, P.J.G. Teunissen, A. Khodabandeh: Galileo IOV RTK positioning: Standalone and combined with GPS, Surv. Rev. 46(337), 267–277 (2014)

    Article  Google Scholar 

  22. C. Cai, C. He, R. Santerre, L. Pan, X. Ciu, J. Zhu: A comparative analysis of measurement noise and multipath for four constellations: GPS, BeiDou, GLONASS and Galileo, Surv. Rev. 48(349), 287–295 (2016)

    Article  Google Scholar 

  23. B. Parkinson, P. Enge: Differential GPS. In: Global Positioning System: Theory and Applications, Vol. 2, ed. by B. Parkinson, J.J. Spilker Jr. (AIAA, Washington 1995) pp. 3–50

    Google Scholar 

  24. G. Wübbena, A. Bagge, G. Seeber, V. Böder, P. Hankemeier: Reducing distance dependent errors for real-time precise DGPS applications by establishing stations networks, Proc. ION GPS-96, Kansas City (ION, Virginia 1996) pp. 1845–1852

    Google Scholar 

  25. P.J.G. Teunissen: Differential GPS: Concepts and quality control, Proc. NIN Workshop Glob. Position. Syst., Amsterdam (Netherlands Institute of Navigation, Delft 1991) pp. 1–46

    Google Scholar 

  26. C. Kee, B.W. Parkinson: Wide area differential GPS (WADGPS): Future navigation system, IEEE Trans. Aerosp. Electron. Syst. 32(2), 795–808 (1996)

    Article  Google Scholar 

  27. H. Rho, R.B. Langley: Dual-frequency GPS precise point positioning with WADGPS corrections, Proc. ION GNSS 2005, Long Beach (ION, Virginia 2005) pp. 1470–1482

    Google Scholar 

  28. J.A. Klobuchar: Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Trans. Aerosp. Electron. Syst. 23(3), 325–331 (1986)

    Google Scholar 

  29. X. Wu, X. Hu, G. Wang, H. Zhong, C. Tang: Evaluation of COMPASS ionospheric model in GNSS positioning, Adv. Space Res. 51, 959–968 (2013)

    Article  Google Scholar 

  30. G. di Giovanni, S.M. Radicella: An analytical model of the electron density profile in the ionosphere, Adv. Space Res. 10(11), 27–30 (1990)

    Article  Google Scholar 

  31. Y. Yuan, X. Huo, J. Ou, K. Zhang, Y. Chai, D. Wen, R. Grenfell: Refining the Klobuchar ionospheric coefficients based on GPS observations, IEEE Trans. Aerosp. Electron. Syst. 44(4), 1498–1510 (2008)

    Article  Google Scholar 

  32. A. Angrisano, S. Gaglione, C. Gioia, M. Massaro, U. Robustelli: Assessment of NeQuick ionospheric model for Galileo single-frequency users, Acta Geophysica 61(6), 1457–1476 (2013)

    Article  Google Scholar 

  33. J. Boehm, R. Heinkelmann, H. Schuh: Short note: A global model of pressure and temperature for geodetic applications, J. Geod. 81(10), 679–683 (2007)

    Article  Google Scholar 

  34. D.B. Wolfe, C.L. Judy, E.J. Haukkala, D.J. Godfrey: Implementing and engineering an NDGPS network in the United States, Proc. ION GPS 2000, Salt Lake City (ION, Virginia 2000) pp. 1254–1263

    Google Scholar 

  35. A. Cameron, T. Reynolds: NDGPS loses interior, keeps coast, GPS World 27(8), 9 (2016)

    Google Scholar 

  36. Radio Technical Commission for Maritime Services: RTCM Standard 10403.2 Differential GNSS Services, Version 3 with Amendment 5 (RTCM, Arlington 2013)

    Google Scholar 

  37. G. Weber, D. Dettmering, H. Gebhard, R. Kalafus: Networked transport of RTCM via internet protocol (Ntrip) – IP-streaming for real-time GNSS applications, Proc. ION GPS 2005, Long Beach (ION, Virginia 2005) pp. 2243–2247

    Google Scholar 

  38. B. Park, J. Kim, C. Kee: RRC unnecessary for DGPS messages, IEEE Trans. Aerosp. Electron. Syst. 42(3), 1149–1160 (2006)

    Article  Google Scholar 

  39. D. Dettmering, G. Weber: The EUREF-IP Ntrip broadcaster: Real-time GNSS data for Europe, Proc. IGS Workshop, Bern (2004)

    Google Scholar 

  40. P.J.G. Teunissen: An integrity and quality control procedure for use in multi sensor integration, Proc. ION GPS 1990, Colorado Springs (ION, Virginia 1990) pp. 513–522

    Google Scholar 

  41. P.J.G. Teunissen: GPS double difference statistics: With and without using satellite geometry, J. Geod. 71(3), 137–148 (1997)

    Article  Google Scholar 

  42. B.W. Remondi: Using the Global Positioning System (GPS) Phase Observable for Relative Geodesy: Modeling, Processing and Results, Ph.D. Thesis (University of Texas, Austin 1984)

    Google Scholar 

  43. Y. Bock, R.I. Abbot, C.C. Counselman, S.A. Gourevitch, R.W. King: Establishment of three-dimensional geodetic control by interferometry with the global positioning system, J. Geophys. Res. 90(B9), 7689–7703 (1985)

    Article  Google Scholar 

  44. B.W. Remondi: Performing centimeter accuracy relative surveys in seconds using carrier phase, Proc. 1st Int. Symp. Precise Position. Glob. Position. Syst. (NOAA), Rockville (National Geodetic Information Center, NOAA, Rockville 1985) pp. 789–797

    Google Scholar 

  45. C.C. Goad: Precise positioning with the global positioning system, Proc. 3rd Int. Symp. Inertial Technol. Surv. Geod. (1986) pp. 745–756

    Google Scholar 

  46. M.E. Cannon: High accuracy GPS semikinematic positioning: Modeling and results, Navigation 37(1), 53–64 (1990)

    Article  Google Scholar 

  47. Y. Kubo, Y. Muto, S. Kitao, C. Uratan, S. Sugimoto: Ambiguity resolution for dual frequency carrier phase kinematic GPS, Proc. IEEE TENCON (2004) pp. 661–664

    Google Scholar 

  48. T. Takasu, A. Yasuda: Kalman-filter-based integer ambiguity resolution strategy for long-baseline RTK with ionosphere and troposphere estimation, Proc. ION GNSS 2010, Portland (ION, Virginia 2010) pp. 161–171

    Google Scholar 

  49. P.J. de Jonge: A Processing Strategy for the Application of the GPS in Networks, Ph.D. Thesis (Netherlands Geodetic Commission, Delft 1998)

    Google Scholar 

  50. D. Odijk: Fast Precise GPS Positioning in the Presence of Ionospheric Delays, Ph.D. Thesis (Netherlands Geodetic Commission, Delft 2002)

    Google Scholar 

  51. M. Pratt, B. Burke, P. Misra: Single-epoch integer ambiguity resolution with GPS-GLONASS L1-L2 data, Proc. ION GPS 1998, Nashville (ION, Virginia 1998) pp. 389–398

    Google Scholar 

  52. N. Reussner, L. Wanninger: GLONASS inter-frequency biases and their effects on RTK and PPP carrier-phase ambiguity resolution, Proc. ION GNSS 2011, Portland (ION, Virginia 2011) pp. 712–716

    Google Scholar 

  53. F. Takac: GLONASS inter-frequency biases and ambiguity resolution, Inside GNSS 4(2), 24–28 (2009)

    Google Scholar 

  54. L. Wanninger, S. Wallstab-Freitag: Combined processing of GPS, GLONASS and SBAS code phase and carrier phase measurements, Proc. ION GNSS 2007, Fort Worth (ION, Virginia 2007) pp. 866–875

    Google Scholar 

  55. L. Wanninger: Carrier-phase inter-frequency biases of GLONASS receivers, J. Geod. 86(2), 139–148 (2012)

    Article  Google Scholar 

  56. H. Yamada, T. Takasu, N. Kubo, A. Yasuda: Evaluation and calibration of receiver inter-channel biases for RTK-GPS/GLONASS, Proc. ION GNSS 2010, Portland (ION, Virginia 2010) pp. 1580–1587

    Google Scholar 

  57. J. Wang, C. Rizos, M.P. Stewart, A. Leick: GPS and GLONASS integration: Modeling and ambiguity resolution issues, GPS Solutions 5(1), 55–64 (2001)

    Article  Google Scholar 

  58. A. Leick, J. Li, Q. Beser, G. Mader: Processing GLONASS carrier phase observations – Theory and first experience, Proc. ION GPS 1995, Palm Springs (ION, Virginia 1995) pp. 1041–1047

    Google Scholar 

  59. S. Banville, P. Collins, F. Lahaye: GLONASS ambiguity resolution of mixed receiver types without external calibration, GPS Solutions 17(3), 275–282 (2013)

    Article  Google Scholar 

  60. D. Odijk, P.J.G. Teunissen, L. Huisman: First results of mixed GPS+GIOVE single-frequency RTK in Australia, J. Spatial Sci. 57(1), 3–18 (2012)

    Article  Google Scholar 

  61. R. Odolinski, P.J.G. Teunissen, D. Odijk: Combined GPS+BDS+Galileo+QZSS for long baseline RTK positioning, Proc. ION GNSS+ 2014, Tampa (ION, Virginia 2014) pp. 2326–2340

    Google Scholar 

  62. O. Julien, P. Alves, M.E. Cannon, W. Zhang: A tightly coupled GPS/GALILEO combination for improved ambiguity resolution, Proc. ENC/GNSS, Graz (Austrian Institute of Navigation (OVN), Graz 2003)

    Google Scholar 

  63. D. Odijk, P.J.G. Teunissen: Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution, GPS Solutions 17(4), 521–533 (2013)

    Article  Google Scholar 

  64. J. Paziewski, P. Wielgosz: Accounting for Galileo-GPS inter-sytem biases in precise satellite positioning, J. Geod. 89(1), 81–93 (2015)

    Article  Google Scholar 

  65. N. Nadarajah, P.J.G. Teunissen, N. Raziq: BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination, Sensors 13, 9435–9463 (2013)

    Article  Google Scholar 

  66. N. Nadarajah, P.J.G. Teunissen, J.-M. Sleewaegen, O. Montenbruck: The mixed-receiver BeiDou inter-satellite-type bias and its impact on RTK positioning, GPS Solutions 19(3), 357–368 (2015)

    Article  Google Scholar 

  67. G. Wang, K. de Jong, Q. Zhao, Z. Hu, J. Guo: Multipath analysis of code measurements for BeiDou geostationary satellites, GPS Solutions 19(1), 129–139 (2015)

    Article  Google Scholar 

  68. P.J.G. Teunissen, R. Odolinski, D. Odijk: Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles, J. Geod. 88(4), 335–350 (2014)

    Article  Google Scholar 

  69. N. Nadarajah, P.J.G. Teunissen: Instantaneous GPS/Galileo/QZSS/SBAS attitude determination: A single-frequency (L1/E1) robustness analysis under constrained environments, Navigation 61(1), 65–75 (2014)

    Article  Google Scholar 

  70. M. Wang, H. Cai, Z. Pan: BDS/GPS relative positioning for long baseline with undifferenced observations, Adv. Space Res. 55, 113–124 (2014)

    Article  Google Scholar 

  71. X. Zhang, X. He: Performance analysis of triple-frequency ambiguity resolution with BeiDou observations, GPS Solutions 20(2), 269–281 (2016)

    Article  Google Scholar 

  72. G. Fotopoulos, M.E. Cannon: An overview of multiple-reference station methods for cm-level positioning, GPS Solutions 4, 1–10 (2001)

    Article  Google Scholar 

  73. L. Dai, S. Han, J. Wang, C. Rizos: A study on GPS/GLONASS multiple reference station techniques for precise real-time carrier phase based positioning, Proc. ION GPS 2001, Salt Lake City (ION, Virginia 2001) pp. 392–403

    Google Scholar 

  74. H.-J. Euler, C.R. Keenan, B.E. Zebhauser, G. Wübbena: Study of a simplified approach in utilizing information from permanent reference station arrays, Proc. ION GPS 2001, Salt Lake City (ION, Virginia 2001) pp. 379–391

    Google Scholar 

  75. H.-J. Euler, S. Seeger, O. Zelzer, F. Takac, B.E. Zebhauser: Improvement of positioning performance using standardized network RTK messages, Proc. ION NTM 2004, San Diego (ION, Virginia 2004) pp. 453–461

    Google Scholar 

  76. G. Wübbena, A. Bagge: Neuere Entwicklungen zu GNSS-RTK für optimierte Genauigkeit, Zuverlässigkeit und Verfügbarkeit: Referenstationsnetze und Multistations-RTK-Lösungen, proc. 46th DVW-Fortbildungsseminar: GPS-Praxis und Trends ‘97, DVW-Schriftenreihe 35/1999, Frankfurt (1999) pp. 73–92

    Google Scholar 

  77. L. Wanninger: Real-time differential GPS error modelling in regional reference station networks. In: International Association of Geodesy Symposia, Vol. 118, (Springer, Berlin 1997) pp. 86–92

    Google Scholar 

  78. U. Vollath, A. Buecherl, H. Landau, C. Pagels, B. Wagner: Multi-base RTK positioning using virtual reference stations, Proc. ION GPS 2000, Salt Lake City (ION, Virginia 2000) pp. 123–131

    Google Scholar 

  79. F. Takac, O. Zelzer: The relationship between network RTK solutions MAC, VRS, PRS, FKP and i-MAX, Proc. ION GPS 2008, Savannah (ION, Virginia 2008) pp. 348–355

    Google Scholar 

  80. L. Wanninger: Real-time differential GPS error modelling in regional reference station networks, Proc. ION GPS 2002, Portland (ION, Virginia 2002) pp. 1400–1407

    Google Scholar 

  81. G. Wübbena, M. Schmitz, A. Bagge: PPP-RTK: Precise point positioning using state-space representation in RTK networks, Proc. ION GNSS 2005, Long Beach (ION, Virginia 2005) pp. 2584–2594

    Google Scholar 

  82. P.J.G. Teunissen, D. Odijk, B. Zhang: PPP-RTK: Results of CORS network-based PPP with integer ambiguity resolution, J. Aeronaut. Astronaut. Aviat. Ser. A 42(4), 223–230 (2010)

    Google Scholar 

  83. X. Li, M. Ge, J. Douša, J. Wickert: Real-time precise point positioning regional augmentation for large GPS reference networks, GPS Solutions 18(1), 61–71 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Amir Khodabandeh of the GNSS Research Centre at Curtin University for his help with the writing of the GLONASS RTK section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Odijk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Odijk, D., Wanninger, L. (2017). Differential Positioning. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_26

Download citation

Publish with us

Policies and ethics