Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

Other than global positioning system (GlossaryTerm

GPS

), Russian global navigation satellite system (GlossaryTerm

GLONASS

), BeiDou, and Galileo, the regional navigation satellite systems (GlossaryTerm

RNSS

) aim to provide a regional service using a constellation of satellites in geostationary Earth orbits (GlossaryTerm

GEO

) and inclined geosynchronous orbits (GlossaryTerm

IGSO

). Two regional systems implemented in Asia will be introduced in this chapter.

The first one is the Japanese Quasi-Zenith Satellite System (GlossaryTerm

QZSS

), which was originally planned as an augmentation system to enhance GPS capability and performance in the area surrounding Japan. The other is the Indian Regional Navigation Satellite System (GlossaryTerm

IRNSS

, also known as NavIC for Navigation with Indian Constellation), which can provide an independent positioning, navigation, and timing (GlossaryTerm

PNT

) service over India and surrounding areas.

In this chapter, the concept of regional navigation satellite systems is first described. The combination of satellites in GEO and IGSO is a common idea to realize such a regional service platform with a low number of satellites. The orbital characteristics and geometry of the proposed RNSS constellations are explained before each RNSS is introduced in detail. Secondly, the detailed characteristics of both systems are described in the following sections. The system architecture, service provision including navigation signal properties and service performance to be provided, as well as the deployment plan or schedule are mentioned for each system. Additionally, initial demonstration results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADEV:

Allan deviation

AOCS:

attitude and orbit control system

BOC:

binary offset carrier

BPSK:

binary phase-shift keying

CDMA:

code division multiple access

CNAV:

civil navigation message

CORS:

continuously operating reference station

CRC:

cyclic redundancy check

CSK:

code shift keying

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

DOP:

dilution of precision

EKF:

extended Kalman filter

FEC:

forward error correction

GEO:

geostationary Earth orbit

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS:

global navigation satellite system

GPS:

Global Positioning System

GPST:

GPS Time

ICD:

interface control document

IGS:

International GNSS Service

IGSO:

inclined geo-synchronous orbit

IRNSS:

Indian Regional Navigation Satellite System

ITU:

International Telecommunication Union

JAXA:

Japan Aerospace Exploration Agency

LNAV:

legacy navigation message

MCS:

master control station

MEO:

medium Earth orbit

MSAS:

Multi-Function Satellite Augmentation System

MS:

monitoring station

NAQU:

notice advisory to QZSS users

NASA:

National Aeronautics and Space Administration

OWCP:

one-way carrier-phase technique

PDOP:

position dilution of precision

PNT:

positioning, navigation and timing

POD:

precise orbit determination

PPP:

precise point positioning

PRN:

pseudo-random noise

QZSS:

Quasi-Zenith Satellite System

RAAN:

right ascension of ascending node

RAFS:

rubidium atomic frequency standard

RDSS:

radio determination satellite service

RF:

radio frequency

RMS:

root mean square

RNSS:

regional navigation satellite system

RTCM:

Radio Technical Commission for Maritime Services

SBAS:

satellite-based augmentation system

SISRE:

signal-in-space range error

SLR:

satellite laser ranging

SPS:

standard positioning service

TAI:

International Atomic Time

TLM:

telemetry (word)

TT&C:

telemetry, tracking, and commanding

TWSTFT:

two-way satellite time and frequency transfer

TWTA:

traveling wave tube amplifier

UERE:

user equivalent range error

USNO:

United States Naval Observatory

UTC:

Coordinated Universal Time

WGS:

World Geodetic System

References

  1. C. Carnebianca: Regional to global satellite based navigation systems, IEEE PLANS’88, Orlando (1988) pp. 25–33

    Google Scholar 

  2. J.R. Wertz, W.J. Larson: Space Mission Analysis and Design, 3rd edn. (Microcosm, Torrance 1999) pp. 143–144

    Google Scholar 

  3. R.D. Briskman: Radio Determination Satellite Service, Proc. IEEE 78(7), 1096–1106 (1990)

    Article  Google Scholar 

  4. R.D. Briskman, R.J. Prevaux: S-DARS broadcast from inclined, elliptical orbits, Acta Astronaut. 54(7), 503–518 (2004)

    Article  Google Scholar 

  5. M. Tanaka, K. Kimura, E. Morikawa, A. Miura, S. Kawase, S. Yamamoto, H. Wakana: Application technique of figure-8 satellites system, Technical Report SAT 99(45), 55–62 (Institute of Electronics, Information and Communication Engineers) in Japanese

    Google Scholar 

  6. H.D. Takahashi: Japanese regional navigation satellite system ‘‘The JRANS Concept’’, J. Glob. Position. Syst. 3(1/2), 259–264 (2004)

    Article  Google Scholar 

  7. S. Kogure, M. Kishimoto, M. Sawabe: Future expansion from QZSS to regional satellite navigation system, ION NTM, San Diego (ION, Virginia 2007) pp. 455–460

    Google Scholar 

  8. J. Spilker: Satellite constellation and geometric dilution of precision. In: Global Positioning System: Theory and Applications, Vol. 1, ed. by B.W. Parkinson, J.J. Spilker (AIAA, Washington 1996) pp. 177–208

    Chapter  Google Scholar 

  9. L. Ma, S. Li: Mathematical aspects for RNSS constellation with IGSO satellites, Earth Sci. Res. 3(2), 66–71 (2014)

    Article  Google Scholar 

  10. I. Kawano, M. Mokuno, S. Kogure, M. Kishimoto: Japanese experimental GPS augmentation using Quasi-Zenith Satellite System (QZSS), ION GNSS, Long Beach (ION, Virginia 2004) pp. 175–181

    Google Scholar 

  11. Y. Murai: Project overview of the Quasi-Zenith Satellite System, Proc. ION GNSS\(+\), Tampa (ION, Virginia 2015) pp. 1291–1332

    Google Scholar 

  12. A. Matsumoto: Status update on the Quasi-Zenith Satellite System (QZSS), 9th Meet. Int. Comm. GNSS (ICG), Prague (UNOOSA, Vienna 2014) pp. 1–18

    Google Scholar 

  13. Service overview on the Quazi-Zenith Satellite System (QZSS) web site, http://qzss.go.jp/en/overview/services/

  14. Japan Aerospace Exploration Agency: Quasi-Zenith Satellite System navigation service interface specification for QZSS, IS-QZSS, V1.6 (JAXA, 2014)

    Google Scholar 

  15. S. Kogure, I. Kawano: GPS augmentation and complement using Quasi-Zenith Satellite System (QZSS), AIAA 2003-2416, Proc. 21st AIAA Int. Commun. Satell. Syst. Conf. Exhib., Yokohama (AIAA, Reston 2003) pp. 1–10

    Google Scholar 

  16. K. Kimura, M. Tanaka: Required velocity increment for formation keeping of inclined geosynchronous constellations, Proc. 51st Int. Astronaut. Cong., Rio de Janeiro (IAF, Paris 2000)

    Google Scholar 

  17. Y. Murai: Project overview Quasi-Zenith Satellite System, Symp. Commer. Appl. Global Navig. Satell. Syst., Vienna (UNOOSA, Vienna 2014) pp. 1–33

    Google Scholar 

  18. M. Saito, J. Takiguchi, T. Okamoto: Establishment of regional navigation satellite system utilizing quasi-zenith satellite system, Mitsubishi Electr. Adv. Mag. 147, 1–6 (2014)

    Google Scholar 

  19. Quasi-Zenith Satellite System Interface Specification – Satellite Positioning, Navigation and Timing Service, IS-QZSS-PNT-001, Draft 12 July 2016 (Cabinet Office, 2016)

    Google Scholar 

  20. Quasi-Zenith Satellite System Interface Specification – Centimeter Level Augmentation Service, IS-QZSSL6-001, Draft 12 July 2016 (Cabinet Office, 2016)

    Google Scholar 

  21. Quasi-Zenith Satellite System Interface Specification – Positioning Technology Verification Service, IS-QZSS-TV-001, Draft 12 July 2016 (Cabinet Office, 2016)

    Google Scholar 

  22. Navstar GPS Space Segment / Navigation User Segment Interfaces, Interface Specification, IS-GPS-200H, 24 Sep. 2013 (Global Positioning Systems Directorate, 2013)

    Google Scholar 

  23. Navstar GPS Space Segment / User Segment L5 Interfaces, Interface Specification, IS-GPS-705D, 24 Sep. 2013 (Global Positioning Systems Directorate, 2013)

    Google Scholar 

  24. Navstar GPS Space Segment / User Segment L1C Interfaces, Interface Specification, IS-GPS-800D, 24 Sep. 2013 (Global Positioning Systems Directorate, 2013)

    Google Scholar 

  25. L1 C/A PRN Code Assignments; US Air Force, Los Angeles Air Force Base, 6 Jan. 2016. http://www.losangeles.af.mil/About-Us/Fact-Sheets/Article/734549/gps-prn-assignment

  26. J.W. Betz: Binary offset carrier modulations for radionavigation, Navigation 48(4), 227–246 (2001)

    Article  Google Scholar 

  27. J.W. Betz, M.A. Blanco, Ch.R. Cahn, Ph.A. Dafesh, Ch.J. Hegarty, K.W. Hudnut, V. Kasemsri, R. Keegan, K. Kovach, L.S. Lenahan, H.H. Ma, J.J. Rushanan, D. Sklar, T.A. Stansell, C.C. Wang, S.K. Yi: Description of the L1C signal, ION GNSS, Fort Worth (ION, Virginia 2006) pp. 2080–2209

    Google Scholar 

  28. H. Maeda: System Research on The Quasi-Zenith Satellites System (in Japanese), Ph.D. Thesis (Tokyo University of Marine Science and Technology, Tokyo 2007)

    Google Scholar 

  29. Technical Working Group Report to the U.S.-Japan GPS Plenary, (GPS-QZSS Technical Working Group, 18 Jan. 2012) http://www.gps.gov/policy/cooperation/japan/2012-joint-announcement/TWG-report.pdf

  30. T. Sakai, H. Yamada, S. Fukushima, K. Ito: Generation and evaluation of QZSS L1-SAIF ephemeris information, ION GNSS, Portland (ION, Virginia 2011) pp. 1277–1287

    Google Scholar 

  31. S. Thoelert, S. Erker, J. Furthner, M. Meurer: Latest signal in space analysis of GPS IIF, COMPASS and QZSS, NAVITEC’2010, Noordwijk (ESA, Noordwijk 2010) pp. 1–8

    Google Scholar 

  32. RTCA DO229D Change 1: Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment (RTCA, Feb. 2013)

    Google Scholar 

  33. T. Sakai, S. Fukushima, N. Takeichi, K. Ito: Implementation of the QZSS L1-SAIF message generator, ION NTM, San Diego (ION, Virginia 2008) pp. 464–476

    Google Scholar 

  34. T. Sakai, S. Fukushima, K. Ito: QZSS L1-SAIF Initial Experiment Results, ION ITM, San Diego (ION, Virginia 2011) pp. 1133–1142

    Google Scholar 

  35. R. Iwama, H. Soga, K. Odagawa, Y. Masuda, T. Osawa, A. Ito, M. Matsumoto: Operation of sub-meter class augmentation system and demonstration experiments with Quasi-Zenith Satellite ‘‘MICHIBIKI’’, ION ITM, Newport Beach (ION, Virginia 2012) pp. 1295–1301

    Google Scholar 

  36. T. Sakai, H. Yamada, K. Ito: Ranging quality of QZSS L1-SAIF signal, ION ITM, Newport Beach (ION, Virginia 2012) pp. 1255–1264

    Google Scholar 

  37. S. Choy, K. Harima, Y. Li, M. Choudhury, C. Rizos, Y. Wakabayashi, S. Kogure: GPS precise point positioning with the Japanese Quasi-Zenith Satellite System LEX augmentation corrections, J. Navig. 68(4), 769–783 (2015)

    Article  Google Scholar 

  38. T. Kasami: Weight distribution formula for some class of cyclic codes, Technical Report R285, 1–24 (University of Illinois, Urbana-Champaign 1966)

    Google Scholar 

  39. S. Kogure: Evaluation of QZS-1 LEX signal, 7th Meet. Int. Comm. GNSS (ICG), Work. Group B, Bejing (UNOOSA, Vienna 2012) pp. 1–9

    Google Scholar 

  40. S. Choy, K. Harima, Y. Li, Y. Wakabayashi, H. Tateshita, S. Kogure, C. Rizos: Real-time precise point positioning utilising the Japanese quasi-zenith satellite system (QZSS) LEX corrections, Proc. IGNSS Symp., Surfers Paradise (IGNSS Society, Tweed Heads 2013) pp. 1–15

    Google Scholar 

  41. A. Garcia-Pena, D. Salos, O. Julien, L. Ries, T. Grelier: Analysis of the use of CSK for future GNSS Signals, ION GNSS, Nashville (ION, Virginia 2013) pp. 1461–1479

    Google Scholar 

  42. Y. Hatanaka, Y. Kuroishi, H. Munekane, A. Wada: Development of a GPS Augmentation Technique, Proc. Int. Symp. GPS/GNSS – Toward New Era Position. Technol., Tokyo (GPS/GNSS Society Japan, 2008) pp. 1097–1103

    Google Scholar 

  43. M. Saito, K. Asari: Centimeter-class Augmentation System (CMAS), Proc. ION GNSS, Nashville (ION, Virginia 2012) pp. 3354–3365

    Google Scholar 

  44. RTCM Standard 10403.2: Differential GNSS Services, Version 3 with Ammendment 2, 7 Nov. 2013 (RTCM, Arlington, VA 2013)

    Google Scholar 

  45. M. Schmitz: RTCM state space representation messages, status and plans, PPP-RTK Open Stand. Symp., Frankfurt (2012) pp. 1–31

    Google Scholar 

  46. M. Caissy, L. Agrotis, G. Weber, M. Hernandez-Pajares, U. Hugentobler: Coming soon – The international GNSS real-time service, GPS World 23(6), 52 (2012)

    Google Scholar 

  47. M. Saito, Y. Sato, M. Miya, M. Shima, Y. Omura, J. Takiguchi, K. Asari: Centimeter-class Augmentation System Utilizing Quasi-Zenith Satellite, ION GNSS, Portland (ION, Virginia 2011) pp. 1243–1253

    Google Scholar 

  48. T. Suzuki, N. Kubo, T. Takasu: Evaluation of precise point positioning using MADOCA-LEX via Quasi-Zenith Satellite System, ION ITM, San Diego (ION, Virginia 2014) pp. 460–470

    Google Scholar 

  49. M. Homma, S. Yoshimoto, N. Natori, Y. Tsutsumi: Engineering Test Satellite-8 for mobile communications and navigation experiment, Proc. 51st Int. Astronaut. Cong., Rio de Janeiro (IAF, Paris 2000)

    Google Scholar 

  50. N. Inaba, A. Matsumoto, H. Hase, S. Kogure, M. Sawabe, K. Terada: Design concept of Quasi Zenith Satellite System, Acta Astronaut. 65(7), 1068–1075 (2009)

    Article  Google Scholar 

  51. Y. Ishijima, N. Inaba, A. Matsumoto, K. Terada, H. Yonechi, H. Ebisutani, S. Ukava, T. Okamoto: Design and developement of the first quasi-zenith satellite attitude and orbit control system, IEEE Aerosp. Conf., Big Sky (2009) pp. 1–8, doi:10.1109/AERO.2009.4839537

    Google Scholar 

  52. O. Montenbruck, R. Schmid, F. Mercier, P. Steigenberger, C. Noll, R. Fatkulin, S. Kogure, S. Ganeshan: GNSS satellite geometry and attitude models, Adv. Sp. Res. 56(6), 1015–1029 (2015)

    Article  Google Scholar 

  53. A. Hauschild, P. Steigenberger, C. Rodriguez-Solano: QZS-1 Yaw attitude estimation based on measurements from the CONGO network, Navigation 59(3), 237–248 (2012)

    Article  Google Scholar 

  54. H. Noda, S. Kogure, M. Kishimoto, H. Soga, T. Moriguchi, T. Furubayashi: Development of the quasi-zenith satellite system and high-accuracy positioning experiment system flight model, NEC Tech. J. 5(4), 93–97 (2010)

    Google Scholar 

  55. T. Obara, S. Furuhata, H. Matsumoto: Overview of initial observation data of technical data acquisition equipments on the first Quasi-Zenith Satellite, 2011-r-58, Proc. 28th Int. Symp. Space Technol. Sci. (ISTS), Okinawa (ISTS, Tokyo 2011) pp. 1–4

    Google Scholar 

  56. S. Hama, Y. Takahashi, K. Kimura, H. Ito, J. Amagai: Quasi-Zenith Satellite System (QZSS) Project, J. Natl. Inst. Inf. Commun. Technol. 57(3/4), 289–296 (2010)

    Google Scholar 

  57. M. Nakamura, Y. Takahashi, J. Amagai, T. Gotoh, M. Fujieda, R. Tabuchi, S. Hama, Y. Yahagi, T. Takahashi, S. Horiuchi: Time comparison experiments between the QZS-1 and its time management station, Navigation 60(4), 319–324 (2013)

    Article  Google Scholar 

  58. O. Montenbruck, P. Steigenberger, E. Schönemann, A. Hauschild, U. Hugentobler, R. Dach, M. Becker: Flight characterization of new generation GNSS satellite clocks, Navigation 59(4), 291–302 (2012)

    Article  Google Scholar 

  59. H. Ito, T. Morikawa, S. Hama: Development and performance evaluation of spaceborne hydrogen maser atomic clock in NICT, ION NTM, San Diego (ION, Virginia 2007) pp. 452–454

    Google Scholar 

  60. T. Iwata, T. Matsuzawa, K. Machita, T. Kawauchi, S. Ota, Y. Fukuhara, T. Hiroshima, K. Tokita, T. Takahashi, S. Horiuchi, Y. Takahashi: Demonstration experiments of a remote synchronization system of an onboard crystal oscillator using ‘‘MICHIBIKI’’, Navigation 60(2), 133–142 (2013)

    Article  Google Scholar 

  61. S. Nakamura: Impact of SLR tracking on QZSS, Proc. Int. Tech. Workshop SLR Track. GNSS Constellations, Metsovo, ed. by E. Pavlis (ILRS, Greenbelt 2009) pp. 68–92

    Google Scholar 

  62. M.R. Pearlman, J.J. Degnan, J.M. Bosworth: The International Laser Ranging Service, Adv. Space Res. 30(2), 135–143 (2002)

    Article  Google Scholar 

  63. O. Montenbruck, P. Steigenberger, G. Kirchner: GNSS satellite orbit validation using satellite laser ranging, Proc. 18th Int. Workshop Laser Ranging, Fujiyoshida (ILRS, Greenbelt 2013) pp. 13–0209

    Google Scholar 

  64. K. Akiyama, T. Otsubo: Accuracy evaluation of QZS-1 orbit solutions with Satellite Laser Ranging, Proc. ILRS Tech. Laser Workshop Satell., Lunar Planet. Laser Ranging: Charact. Space Segment, Frascati (ILRS, Greenbelt 2012)

    Google Scholar 

  65. N. Inaba, H. Hase, H. Miyamoto, Y. Ishijima, S. Kawakita: A satellite simulator and model based operations in Quasi-Zenith Satellite System, AIAA Model. Simul. Conf., AIAA-2009-5813, Chicago (AIAA, Reston 2009) pp. 1–16

    Google Scholar 

  66. H. Miyamoto, M. Kishimoto, E. Myojin, S. Kogure: Model-based design of Ground Segment for Quasi-Zenith Satellite System, Proc. SpaceOps 2012 Conf., Stockholm (AIAA, Reston 2012) pp. 1–7

    Google Scholar 

  67. M. Nakamura, S. Hama, Y. Takahashi, J. Amagai, T. Gotoh, M. Fujieda, R. Tabuchi, M. Aida, I. Nakazawa, T. Hobiger, T. Takahashi, S. Horiuchi: Time management system of the QZSS and time comparison experiments, AIAA 2011-8067, 29th AIAA Int. Commun. Satell. Syst. Conf. (ICSSC-2011), Nara (AIAA, Reston 2011) pp. 534–538

    Google Scholar 

  68. N. Kajiwara, Y. Yamamoto, M. Sawabe, S. Kogure, T. Tsuruta, M. Kishimoto, Y. Kawaguchi, T. Shibata: Overview of precise orbit and clock estimation for Quasi-Zenith Satellite System and simulation results, 2009-d-35, Proc. 27th Int. Symp. Space Technol. Sci. (ISTS), Tsukuba (ISTS, Tokyo 2009) pp. 1–6

    Google Scholar 

  69. S. Matsumura, M. Murakami, T. Imakiire: Concept of the new Japanese geodetic system, Bull. Geogr. Surv. Inst. 51, 1–9 (2004)

    Google Scholar 

  70. J.A. Klobuchar: Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Trans. Aerosp. Electron. Syst. AES-2 3(3), 325–331 (1987)

    Article  Google Scholar 

  71. E.M. Soop: Handbook of Geostationary Orbits (Kluwer Academic, Dordrecht 1994)

    Book  Google Scholar 

  72. Notice Advisory to QZSS Users (JAXA), http://qz-vision.jaxa.jp/USE/en/naqu

  73. T. Sawamura, T. Takahashi, T. Moriguchi, K. Ohara, H. Noda, S. Kogure, M. Kishimoto: Performance of QZSS (Quasi-Zenith Satellite System) and L-Band Navigation Payload, ION GNSS, Nashville (ION, Virginia 2012) pp. 1228–1254

    Google Scholar 

  74. E. Kishimoto, M. Myojin, S. Kogure, H. Noda, K. Terada: QZSS On Orbit Technical Verification Results, ION GNSS, Portland (ION, Virginia 2011) pp. 1206–1211

    Google Scholar 

  75. JAXA: ‘‘QZ-vision’’ Experiment Results SIS-URE, http://qz-vision.jaxa.jp/USE/en/exp_results_report

  76. O. Montenbruck, P. Steigenberger, A. Hauschild: Broadcast versus precise ephemerides: A Multi-GNSS perspective, GPS Solut. 19(2), 321–333 (2015)

    Article  Google Scholar 

  77. F. Gonzalez, P. Waller: GNSS clock performance analysis using one-way carrier phase and network methods, 39th Annu. Precise Time Time Interval (PTTI) Meet., Long Beach (ION, Virginia 2007) pp. 403–414

    Google Scholar 

  78. P. Steigenberger, A. Hauschild, O. Montenbruck, C. Rodriguez-Solano, U. Hugentobler: Orbit and clock determination of QZS-1 based on the CONGO network, Navigation 60(1), 31–40 (2013)

    Article  Google Scholar 

  79. A.S. Ganeshan, S.C. Rathnakara, R. Gupta, A.K. Jain: Indian Regional Navigation Satellite System (IRNSS) Concept, J. Spacecr. Technol. 15(2), 19–23 (2005)

    Google Scholar 

  80. B.S. Kiran, S. Singh: Mission design and analysis for IRNSS-1A, Proc. 65th Int. Astronaut. Congr., Toronto (IAF, Paris 2000) pp. 1–12

    Google Scholar 

  81. P. Majithiya, K. Khatri, J.K. Hota: Indian Regional Navigation Satellite System – Correction parameters for timing group delays, Inside GNSS 6(1), 40–46 (2011)

    Google Scholar 

  82. S. Thoelert, O. Montenbruck, M. Meurer: IRNSS-1A – Signal and clock characterization of the Indian Regional Navigation System, GPS Solutions 18(1), 147–152 (2014)

    Article  Google Scholar 

  83. S.B. Sekar, S. Sengupta, K. Bandyopadhyay: Spectral compatibility of BOC(5,2) modulation with existing GNSS signals, Proc. IEEE/ION PLANS 2012, Myrtle Beach (2012) pp. 886–890

    Google Scholar 

  84. Indian Regional Navigation Satellite System – Signal In Space ICD for Standard Positioning Service, version 1.0, June 2014 (Indian Space Research Organization, Bangalore, 2014)

    Google Scholar 

  85. P. Misra, P. Enge: Global Positioning System; Signals, Measurements and Performance, 2nd edn. (Ganga-Jamuna Press, Lincoln, MA 2006)

    Google Scholar 

  86. A.S. Ganeshan: Overview of GNSS and Indian Navigation Program, GNSS User Meet. (ISRO Satellite Center, Bangalore 2012)

    Google Scholar 

  87. T. Neetha, A. Kartik, S.C. Ratnakar, A.S. Ganeshan: The IRNSS Navigation Message, J. Spacecr. Technol. 21(1), 41–51 (2011)

    Google Scholar 

  88. O. Montenbruck, P. Steigenberger: The BeiDou Navigation Message, J. Glob. Position. Syst. 12(1), 1–12 (2013)

    Article  Google Scholar 

  89. T. Rethika, S. Mishra, S. Nirmala, S.C. Rathnakara, A.S. Ganeshan: Single frequency ionospheric error correction using coefficients generated from regional ionospheric data for IRNSS, Indian J. Radio Space Phys. 42(3), 125–130 (2013)

    Google Scholar 

  90. H. Harde, M.R. Shahade, D. Badnore: Indian Regional Navigation System, Int. J. Res. Sci. Eng. 1(SP1), 36–42 (2015)

    Google Scholar 

  91. T.S. Ganesh, C.K. Sharma, S. Venkateswarlu, G.J. Das, B.S. Chandrasekhar, S.K. Shivakumars: Use of two-way CDMA ranging for precise orbit determination of IRNSS satellites, Int. J. Syst. Technol. 3(1), 127–137 (2010)

    Google Scholar 

  92. R. Babu, P. Mula, S.C. Ratnakara, A.S. Ganeshan: IRNSS satellite parameter estimation using combination strategy, Glob. J. Sci. Front. Res. 15(3), 1–10 (2015)

    Google Scholar 

  93. S. Kavitha, P. Mula, R. Babu, S.C. Ratnakara, A.S. Ganeshan: Adaptive extended Kalman filter for orbit estimation of GEO satellites, J. Env. Earth Sci. 5(3), 1–10 (2015)

    Google Scholar 

  94. O. Montenbruck, P. Steigenberger: IRNSS orbit determination and broadcast ephemeris assessment, ION ITM, Dana Point (ION, Virginia 2015) pp. 185–193

    Google Scholar 

  95. PSLV-C22/IRNSS-1A brochure (ISRO, Bangalore 2013)

    Google Scholar 

  96. A. Kumari, K. Samal, D. Rajarajan, U. Swami, A. Kartik, R. Babu, S.C. Rathnakara, A.S. Ganeshan: Precise modeling of solar radiation pressure for IRNSS satellite, J. Nat. Sci. Res. 5(3), 35–43 (2015)

    Google Scholar 

  97. K. Varma, D. Rajarajan, N. Tirmal, S.C. Rathnakara, A.S. Ganeshan: Modeling of IRNSS System Time-Offset with Respect to other GNSS, Contr. Theory Inform. 5(2), 10–17 (2015)

    Google Scholar 

  98. N. Neelakantan: Overview of the Timing system planned for IRNSS, 5th Meet. Int. Comm. GNSS (ICG), Turn (UNOOSA, Vienna 2010) pp. 1–6

    Google Scholar 

  99. R.B. Langley: Dilution of precision, GPS World 10(5), 52–59 (1999)

    Google Scholar 

  100. A.D. Sarma, Q. Sultana, V.S. Srinivas: Augmentation of Indian Regional Navigation Satellite System to improve dilution of precision, J. Navig. 63(2), 313–321 (2010)

    Article  Google Scholar 

  101. A.S. Ganeshan, S.C. Ratnakara, N. Srinivasan, B. Rajaram, K.N. Anbalagan: Tirmal: First position fix with IRNSS – Successful proof-of-concept demonstration, Inside GNSS 10(4), 48–52 (2015)

    Google Scholar 

  102. N. Nadarajah, A. Khodabandeh, P.J.G. Teunissen: Assessing the IRNSS L5-signal in combination with GPS, Galileo, and QZSS L5/E5a-signals for positioning and navigation, GPS Solutions (2015), doi:10.1007/s10291-015-0450-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kogure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kogure, S., Ganeshan, A., Montenbruck, O. (2017). Regional Systems. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_11

Download citation

Publish with us

Policies and ethics