Skip to main content

Evaluating the Contribution of Energy Storages to Support Renewable Integrations

  • Chapter
  • First Online:
Advances in Energy Systems Engineering
  • 1454 Accesses

Abstract

Energy storage systems (ESSs) are one kind of advances in energy systems engineering and of great value to realize energy management and to support renewable generation. The combined operation of ESSs and renewables is one way to achieve output levelling and to improve the integration of sustainable energy. However, in a market-based environment, ESSs would make strategic decisions on self-schedules and arbitrage in energy and ancillary service markets, maximizing the overall profits. Will the strategic operation of ESSs promote renewable generation integration? To explicitly answer this question, this chapter proposes a multi-period Nash-Cournot equilibrium model for joint energy and ancillary service markets to evaluate the contribution of the ESSs for supporting renewable generation. Then, a reformulation approach based on the potential function is proposed, which can transform the bi-level equilibrium model into an integrated single-level optimization problem to enhance the computation efficiency. Numerical examples are implemented to validate the effectiveness of the reformulation technique. The results of the case study indicate that the ESSs indirectly but substantially provide improved flexibilities while pursuing individual profit maximization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aigner, T., Jaehnert, S., Doorman, G. L., & Gjengedal, T. (2012). the effect of large-scale wind power on system balancing in Northern Europe. IEEE Transactions on Sustainable Energy, 3(4), 751–759.

    Article  Google Scholar 

  • Akhavan-Hejazi, H., & Mohsenian-Rad, H. (2014). Optimal operation of independent storage systems in energy and reserve markets with high wind penetration. IEEE Transactions on Smart Grid, 5, 1088–1097.

    Article  Google Scholar 

  • Ali, Karimi V., Ali, D., & Hassan, M. (2011). A new self-scheduling strategy for integrated operation of wind and pumped-storage power plants in power markets. Applied Energy, 88, 5002–5012.

    Article  Google Scholar 

  • Carlos, R., Antonio, J., & Conejo, Yves S. (2012). Equilibria in an oligopolistic electricity pool with stepwise offer curves. IEEE Transactions on Power Systems, 27, 752–761.

    Google Scholar 

  • Deb, C. (2004). Multicommodity spatial cournot model for generator bidding analysis. IEEE Transactions on Power Systems, 19(1), 267–275.

    Article  MathSciNet  Google Scholar 

  • Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., & Villafáfila-Robles, R. (2012). A review pf energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews, 16, 2154–2171.

    Article  Google Scholar 

  • Drew, F., & Jean, T. (2013). Game Theory (Vol. I, p. 14). Cambridge: MIT Press.

    Google Scholar 

  • Electric Reliability Council of Texas (ERCOT). (2015). http://www.ercot.com/.

  • Energy Information Administration. (2013, April). Updated capital cost estimates for utility scale electricity generating plants. U.S. Department of Energy, Washington, DC, Technical report TR-20585 (6–7).

    Google Scholar 

  • Gabriel, S. A., Conejo, A. J., Fuller, J. D., et al. (2013). Complementarity modeling in energy markets (vol. I, p. 283). New York: Springer.

    Google Scholar 

  • GAMS Development Corporation. (2009). GAMS: The solver manuals (vol. I,, p. 183). GDC.

    Google Scholar 

  • He, G., Chen, Q., Kang, C., Pinson, P., & Xia, Q. (2015). Optimal bidding strategy of battery storage in power markets considering performance-based regulation and battery cycle life. IEEE Transactions on Smart Grid.

    Google Scholar 

  • Holttinen, H., Milligan, M., Ela, E., Menemenlis, N., Dobschinski, J., Rawn, B., et al. (2012). Methodologies to determine operating reserves due to increased wind power. IEEE Transactions on Sustainable Energy, 3(4), 713–723.

    Article  Google Scholar 

  • Jian, Y., Shmuel, O. S., & Llan, A. (2007). Cournot equilibria in two-settlement electricity markets with system contingencies. International Journal of Critical Infrastructures, 3(1), 142–160.

    Google Scholar 

  • Jiang, R., Wang, J., Zhang, M., & Guan, Y. (2013). Two-stage MInimax regret robust unit commitment. IEEE Transactions on Power Systems, 28(3), 2271–2282.

    Article  Google Scholar 

  • Klemperer, P. D., & Meyer, M. A. (1989). Supply function equilibria in oligopoly under uncertainty. Econometrica, 57(6), 1243–1277.

    Article  MathSciNet  MATH  Google Scholar 

  • Kulkarni, A. A., & Shanbhag, U. V. (2014). A shared-constraint approach to multi-leader multi-follower games. Anal: Set-Valued Var.

    MATH  Google Scholar 

  • Li, G., Shi, J., & Qu, X. (2011). Modeling methods for GenCo bidding strategy optimization in the liberalized electricity spot market—A state-of-the-art review. Energy, 36(8), 4686–4700.

    Article  Google Scholar 

  • Maria, D., Giuseppe, F., Mariagiovanna, P., & Michele, T. (2012). Planning and operating combined wind-storage system in electricity market. IEEE Transactions on Sustainable Energy, 3(2), 209–217.

    Article  Google Scholar 

  • Masiello, R. D., Roberts, B., & Sloan, T. (2014). Business models for deploying and operating energy storage and risk mitigation aspects. Proceedings of the IEEE, 201(7), 1052–1064.

    Article  Google Scholar 

  • Molina, J. P., Zolezzi, J. M., & Contreras, J. (2011). Nash-Cournot equilibria in hydrothermal electricity markets. IEEE Transactions on Power Systems, 26(3), 1089–1101.

    Article  Google Scholar 

  • Monderer, D., & Shapley, L. S. (1996). Potential games. Games and Economic Behavior, 14, 124–143.

    Article  MathSciNet  MATH  Google Scholar 

  • PJM. (2015). Working to perfect the flow of energy. http://www.pjm.com/.

  • Tamaschke, R., Docwra, G., & Stillman, R. (2005). Measuring market power in electricity generation: A long-term perspective using a programming model. Energy Economics, 27(2), 317–350.

    Article  Google Scholar 

  • Thatte, A. A., Xie, L., Viassolo, D. E., & Singh, S. (2013). risk measure based robust bidding strategy for arbitrage using a wind farm and energy storage. IEEE Transactions on Smart Grid, 4, 2191–2199.

    Article  Google Scholar 

  • The BP Energy Outlook. (2015). http://www.bp.com/.

  • Usaola, J. (2011). Operation of concentrating solar power plants with storage in spot electricity market. IET Renewable Power Generation, 6(1), 59–66.

    Article  Google Scholar 

  • Vahidianasab, V., & Jadid, S. (2010). Stochastic multi-objective self-scheduling of a power producer in joint energy and reserve markets. Electric Power Systems Research, 80, 760–769.

    Article  Google Scholar 

  • Voorneveld, M. (2000). Best-response potential games. Economics Letters, 66, 289–295.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, C., Lu, Z., & Qiao, Y. (2013). A consideration of the wind power benefits in day-ahead scheduling of wind-coal intensive power systems. IEEE Transactions on Power Systems, 28(1), 236–245.

    Article  Google Scholar 

  • Willems, B., Rumiantseva, I., & Weigt, H. (2009). Cournot versus supply functions: What does the data tell us? Energy Econ., 31(1), 38–47.

    Article  Google Scholar 

  • Woo, C., Zarnikau, J., Kadish, J., Horowitz, I., Wang, J., & Olson, A. (2013). The impact of wind generation on wholesale electricity prices in the hydro-rich Pacific Northwest. IEEE Transactions on Power Systems, 28(4), 4245–4253.

    Article  Google Scholar 

  • Xiao, Y., Su, Q., Bresler, F. S., Carroll, R., & Schmitt, J. R. (2014). Performance-based regulation model in PJM wholesale markets. In Proceedings of the IEEE Power Engineering Society on General Meeting.

    Google Scholar 

  • Yousefi, A., Iu, H. H., Fernando, T., & Trinh, H. (2013). An approach for wind power integration using demand side resources. IEEE Transactions Sustainable Energy, 4(4), 917–924.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qixin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, Q., Zou, P., Xia, Q., Kang, C. (2017). Evaluating the Contribution of Energy Storages to Support Renewable Integrations. In: Kopanos, G., Liu, P., Georgiadis, M. (eds) Advances in Energy Systems Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-42803-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42803-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42802-4

  • Online ISBN: 978-3-319-42803-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics