Skip to main content

An Optimization Framework for Power Systems Planning Considering Unit Commitment Constraints

  • Chapter
  • First Online:
Advances in Energy Systems Engineering

Abstract

This chapter presents a generic mixed integer linear programming (MILP) model that integrates the unit commitment problem (UCP), i.e., daily energy planning with the long-term generation expansion planning (GEP) framework. Typical daily constraints at an hourly level such as start-up and shut-down related decisions (start-up type, minimum up and down time, synchronization, soak and desynchronization time constraints), ramping limits, system reserve requirements are combined with representative yearly constraints such as power capacity additions, power generation bounds of each unit, peak reserve requirements, and energy policy issues (renewables penetration limits, CO2 emissions cap and pricing). For modelling purposes, a representative day (24 h) of each month over a number of years has been employed in order to determine the optimal capacity additions, electricity market clearing prices, and daily operational planning of the studied power system. The model has been tested on an illustrative case study of the Greek power system. Our approach aims to provide useful insight into strategic and challenging decisions to be determined by investors and/or policy makers at a national and/or regional level by providing the optimal energy roadmap under real operating and design constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EU:

European Union

GEP:

Generation Expansion Planning

MILP:

Mixed Integer Linear Programming

NGCC:

Natural Gas Combined Cycle

NGGT:

Natural Gas Turbine (or Natural Gas Open Cycle)

O&M:

Operational and Maintenance

RET:

Renewable Energy Technologies

SMP:

System Marginal Price

UCP:

Unit Commitment Problem

\(a \in A\) :

Set of start-up types {hot, warm, cold}

\(bl \in BL\) :

Set of blocks of the energy offer function of each hydrothermal unit (or energy bids for load representatives)

\(i \in I^{EX}\) :

Set of existing units

\(i \in I^{HT}\) :

Set of hydrothermal units

\(i \in I^{NEW}\) :

Set of new candidate units

\(i \in I^{RES}\) :

Set of renewable units (including hydro units)

\(i \in I^{RES - }\) :

Set of renewable units (not including hydro units)

\(i \in I^{S}\) :

Set of units \(i \in I\) that are (or can be) installed in sector \(s \in S\)

\(i \in I^{TH}\) :

Set of thermal units

\(i \in I^{z}\) :

Set of units \(i \in I\) that are (or can be) installed in zone \(z \in Z\)

\(i \in I\) :

Set of all units

\(m \in M\) :

Set of months

\(nc \in NC^{s}\) :

Set of neighbouring countries \(nc \in NC\) interconnected with sector \(s \in S\)

\(nc \in NC^{z}\) :

Set of neighbouring countries \(nc \in NC\) interconnected with zone \(z \in Z\)

\(nc \in NC\) :

Set of interconnections (neighbouring countries)

\(s \in S^{{s^{'} }}\) :

Set of sectors \(s \in S\) interconnected with sector \(s^{'} \ne s \in S\)

\((s, s^{{\prime }} ) \in S\) :

Set of sectors

\((t,t^{{\prime }} ) \in T\) :

Set of hours

\((y,y^{'} ) \in Y\) :

Set of years

\(z \in Z\) :

Set of zones

\(AV_{i,z,m,t}\) :

Availability factor of each unit \(i \in I^{RES}\) in zone \(z \in Z\), month \(m \in M\), and hour \(t \in T\) (p.u.)

\(CEXPB_{nc,bl,y,m,t}\) :

Export (load) revenues of block \(bl \in BL\) of interconnection \(nc \in NC\), in year \(y \in Y\), month \(m \in M,\) and hour \(t \in T\) (€/MW)

\(CFL_{{s,s^{'} ,y}}\) :

Maximum corridor flow from sector \(s \in S\) to sector \(s^{'} \ne s \in S\) in year \(y \in Y\) (MW)

\(CIMPB_{nc,bl,y,m,t}\) :

Marginal cost of block \(bl \in BL\) of the imported energy offer function from interconnection \(nc \in NC\), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (€/MW)

\(CIM_{nc,y}\) :

Power capacity of interconnection \(nc \in NC\) in each year \(y \in Y\) (MW)

\(CO_{2} \_CAP_{y}\) :

Maximum allowable CO2 emissions produced in year \(y \in Y\) (t CO2)

\(CO_{2} \_EF_{i,bl}\) :

CO2 emission factor of each unit \(i \in I^{TH}\), in power capacity block \(bl \in BL\) (tCO2/MWh)

\(CPB_{i,bl,y,m,t}\) :

Marginal cost of block \(bl \in BL\) of the energy offer function of each unit \(i \in I^{HT}\), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (€/MW)

\(CR1_{i,y,m,t}\) :

Price of the primary energy offer of each unit \(i \in I^{HT}\), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (€/MW)

\(CR2_{i,y,m,t}\) :

Price of the secondary range energy offer of each unit \(i \in I^{HT}\), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (€/MW)

\(CRF_{i}\) :

Capital recovery factor of each unit \(i \in I^{NEW}\) (p.u.)

\(CSD_{i}\) :

Shut-down cost of each thermal unit \(i \in I^{TH}\) (€)

\(DUR_{m}\) :

Duration of each month (in days)

\(Dem_{s,y,m,t}\) :

Power load of sector \(s \in S\), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(EFORIM_{nc,y}\) :

Unavailability factor of each interconnection \(nc \in NC\) in each year \(y \in Y\) (p.u.)

\(EFOR_{i,y}\) :

Unavailability factor of each unit \(i \in I^{TH}\) in each year \(y \in Y\) (p.u.)

\(Exblock_{nc,bl,y,m,t}\) :

Quantity of each power capacity block \(bl \in BL\) of each interconnection \(nc \in NC\) (exports), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(FOM_{i}\) :

Fixed operational and maintenance cost of each unit \(i \in I^{RES - }\) (€/MW)

\(FastR2Req_{y,m,t}^{down}\) :

System requirements in fast secondary-down reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(FastR2Req_{y,m,t}^{up}\) :

System requirements in fast secondary-up reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(IC_{i,y}\) :

Installed capacity of unit \(i \in I^{EX}\) in year \(y \in Y\) (MW)

\(INL_{z,y,m,t}\) :

Injection losses coefficient in zone \(z \in Z\), year \(y \in Y\) month \(m \in M\), and hour \(t \in T\) (p.u.)

\(INVC_{i,y}\) :

Investment cost of unit \(i \in I^{NEW}\) in year \(y \in Y\) (€/MW)

\(Imblock_{nc,bl,y,m,t}\) :

Quantity of each power capacity block \(bl \in BL\) of each interconnection \(nc \in NC\) (imports), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(MRES_{y}\) :

Maximum RES penetration in year \(y \in Y\) (p.u.)

\(PBL_{i,bl,y,m,t}\) :

Quantity of each power capacity block \(bl \in BL\) of the energy offer function of unit \(i \in I^{HT}\) in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(PFX_{i,y,m,t}\) :

Fixed (non-priced) component of the energy offer function of each unit \(i \in I\) in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(PMAX_{i}^{dp}\) :

Maximum power output (dispatchable phase) of each unit \(i \in I^{HT}\) (MW)

\(PMAX_{i}^{sc}\) :

Maximum power output (when providing secondary reserve) of each unit \(i \in I^{HT}\) (MW)

\(PMIN_{i}^{dp}\) :

Minimum power output (dispatchable phase) of each unit \(i \in I^{HT}\)(MW)

\(PMIN_{i}^{sc}\) :

Minimum power output (when providing secondary reserve) of each unit \(i \in I^{HT}\)(MW)

\(PSK_{i}\) :

Power output of each thermal unit \(i \in I^{TH}\) when operating in soak phase (MW)

\(R1Req_{y,m,t}\) :

System requirements in primary-up reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(R1_{i}\) :

Maximum contribution of unit \(i \in I^{HT}\) in primary reserve (MW)

\(R2Req_{y,m,t}^{down}\) :

System requirements in secondary-down reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(R2Req_{y,m,t}^{up}\) :

System requirements in secondary-up reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(R2_{i}\) :

Maximum contribution of unit \(i \in I^{HT}\) in secondary reserve (MW)

\(R3Req_{y,m,t}\) :

System requirements in tertiary reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(R3_{i}^{nsp}\) :

Maximum contribution of unit \(i \in I^{HT}\) in non-spinning tertiary reserve (MW)

\(R3_{i}^{sp}\) :

Maximum contribution of unit \(i \in I^{HT}\) in spinning tertiary reserve (MW)

\(REN_{y}\) :

RES penetration target in the power mix in year \(y \in Y\) (p.u.)

\(RES\_CAP_{i,z,y}\) :

Maximum allowable capacity of each unit \(i \in I^{RES - }\) in zone \(z \in Z\), year \(y \in Y\) (p.u.)

\(RR\_down_{i}\) :

Ramp-down rate of unit \(i \in I^{HT}\) (MW)

\(RR\_sec_{i}\) :

Ramp rate of unit \(i \in I^{HT}\) when providing secondary reserve (MW)

\(RR\_up_{i}\) :

Ramp-up rate of unit \(i \in I^{HT}\) (MW)

\(T\_con_{i}\) :

Construction time of unit \(i \in I^{NEW}\) (y)

\(T\_dn_{i}\) :

Desynchronization time of thermal unit \(i \in I^{TH}\) (h)

\(T\_down_{i}\) :

Minimum down time of thermal unit \(i \in I^{TH}\) (h)

\(T\_sd_{i}\) :

Non-operational time (after being shut-down) of thermal unit \(i \in I^{TH}\) (h)

\(T\_sd_{i}^{cold}\) :

Non-operational time of thermal unit \(i \in I^{TH}\) before going from warm to cold standby condition (h)

\(T\_sd^{prior}\) :

Extended time period in the past (greater than the higher cold reservation time of all thermal units) (h)

\(T\_sd_{i}^{warm}\) :

Non-operational time of thermal unit \(i \in I^{TH}\) before going from hot to warm standby condition (h)

\(T\_sk_{i}^{a}\) :

Type-\(a\) soak time of thermal unit \(i \in I^{TH}\) (h)

\(T\_sn_{i}^{a}\) :

Type-\(a\) synchronization time of thermal unit \(i \in I^{TH}\) (h)

\(T\_sd_{i}^{1,2}\) :

Non-operational time of thermal unit \(i \in I^{TH}\) before changing standby condition (h) (1: from hot to warm condition, 2: from warm to cold condition)

\(T\_up_{i}\) :

Minimum up time of thermal unit \(i \in I^{TH}\) (h)

\(RSV\) :

Minimum peak reserve requirements (p.u.)

\(cf_{{s,s^{'} ,y,m,t}}\) :

Corridor power flow from sector \(s \in S\) to \(s \ne s^{'} \in S\) in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(c_{i,y}\) :

Power capacity of unit \(i \in I\) in year \(y \in Y\) (MW)

\(expb_{nc,bl,y,m,t}\) :

Quantity of power capacity block \(bl \in BL\) exported to neighbouring country \(nc \in NC\), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(exp_{nc,y,m,t}\) :

Total energy withdrawal (exports) to neighbouring country \(nc \in NC\), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(fastr2_{i,y,m,t}^{down}\) :

Contribution of unit \(i \in I^{HT}\) in fast secondary-down reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(fastr2_{i,y,m,t}^{up}\) :

Contribution of unit \(i \in I^{HT}\) in fast secondary-up reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(im\_inj_{nc,y,m,t}\) :

Net (taking into account energy losses) energy injection (imports) to neighbouring country \(nc \in NC\), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(impb_{nc,bl,y,m,t}\) :

Quantity of power capacity block \(bl \in BL\) imported from neighbouring country \(nc \in NC\), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(imp_{nc,y,m,t}\) :

Energy injection (imports) from neighbouring country \(nc \in NC\), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(nc_{i,y}\) :

Newly-built capacity of unit \(i \in I^{NEW}\) available for the first time in year \(y \in Y\) (MW)

\(p\_dn_{i,y,m,t}\) :

Power output of thermal unit \(i \in I^{TH}\) when operating in the desynchronization phase in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(p\_inj_{i,y,m,t}\) :

Net (taking into account energy losses) energy injection (generation) from unit \(i \in I^{HT}\), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(p\_sk_{i,y,m,t}\) :

Power output of thermal unit \(i \in I^{TH}\) when operating in the soak phase in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(pb_{i,bl,y,m,t}\) :

Quantity of power capacity block \(bl \in BL\) of unit \(i \in I^{HT}\), dispatched in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(p_{i,y,m,t}\) :

Energy injection (generation) from unit \(i \in I^{HT}\), in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(r1_{i,y,m,t}^{up}\) :

Contribution of unit \(i \in I^{HT}\) in primary-up reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(r2_{i,y,m,t}^{down}\) :

Contribution of unit \(i \in I^{HT}\) in secondary-down reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(r2_{i,y,m,t}^{up}\) :

Contribution of unit \(i \in I^{HT}\) in secondary-up reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(r3_{i,y,m,t}\) :

Total contribution of unit \(i \in I^{HT}\) in tertiary reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(r3_{i,y,m,t}^{nsp}\) :

Contribution of unit \(i \in I^{HT}\) in non-spinning tertiary reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(r3_{i,y,m,t}^{sp}\) :

Contribution of unit \(i \in I^{HT}\) in spinning tertiary reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\) (MW)

\(cn_{i,y}\) :

Equals 1 if the decision for the construction of unit \(i \in I^{NEW}\) is to be taken in year \(y \in Y\)

\(w_{i,y,m,t}\) :

Equals 1 if unit \(i \in I^{HT}\) is shut-down in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\)

\(x\_3ns_{i,y,m,t}\) :

Equals 1 if unit \(i \in I^{HT}\) contributes to non-spinning tertiary reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\)

\(x\_dn_{i,y,m,t}\) :

Equals 1 if thermal unit \(i \in I^{TH}\) operates in the desynchronization phase in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\)

\(x\_dp_{i,y,m,t}\) :

Equals 1 if unit \(i \in I^{HT}\) operates in the dispatchable phase in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\)

\(x\_sc_{i,y,m,t}\) :

Equals 1 if unit \(i \in I^{HT}\) contributes to secondary reserve in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\)

\(x\_sk_{i,y,m,t}\) :

Equals 1 if thermal unit \(i \in I^{TH}\) operates in the soak phase in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\)

\(x\_sk_{i,y,m,t}^{a}\) :

Equals 1 if thermal unit \(i \in I^{TH}\) operates in the type-\(a\) soak phase in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\)

\(x\_sn_{i,y,m,t}\) :

Equals 1 if thermal unit \(i \in I^{TH}\) operates in the synchronization phase in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\)

\(x\_sn_{i,y,m,t}^{a}\) :

Equals 1 if thermal unit \(i \in I^{TH}\) operates in the type-\(a\) synchronization phase in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\)

\(x\_st_{i,y,m,t}\) :

Equals 1 if unit \(i \in I^{HT}\) starts-up in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\)

\(x\_st_{i,y,m,t}^{a}\) :

Equals 1 if a type-\(a\) start-up decision is taken for thermal unit \(i \in I^{TH}\) in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\)

\(x_{i,y,m,t}\) :

Equals 1 if unit \(i \in I^{HT}\) is committed (operational) in year \(y \in Y\), month \(m \in M\), and hour \(t \in T\)

References

  • Ahmed, S., Elsholkami, M., Elkamel, A., Du, J., Ydstie, E. B., & Douglas, P. L. (2014). Financial risk management for new technology integration in energy planning under uncertainty. Applied Energy, 128, 75–81.

    Article  Google Scholar 

  • Ahmed, S., Elsholkami, M., Elkamel, A., Du, J., Ydstie, E. B., & Douglas, P. L. (2015). New technology integration approach for energy planning with carbon emission considerations. Energy Conversion and Management, 95, 170–180.

    Article  Google Scholar 

  • Andrianesis, P., Biskas, P., & Liberopoulos, G. (2011). An overview of Greece’s wholesale electricity market with emphasis on ancillary services. Electric Power Systems Research, 81, 1631–1642.

    Article  Google Scholar 

  • Barteczko-Hibbert, C., Bonis, I., Binns, M., Theodoropoulos, C., & Azapagic, A. (2014). A multi-period mixed-integer linear optimisation of future electricity supply considering life cycle costs and environmental impacts. Applied Energy, 133, 317–334.

    Article  Google Scholar 

  • Batas Bjelić, I., Rajaković, N., Ćosić, B., & Duić, N. (2013). Increasing wind power penetration into the existing Serbian energy system. Energy, 57, 30–37.

    Article  Google Scholar 

  • Belderbos, A., & Delarue, E. (2015). Accounting for flexibility in power system planning with renewables. International Journal of Electrical Power and Energy Systems, 71, 33–41.

    Article  Google Scholar 

  • Connolly, D., Lund, H., Mathiesen, B. V., & Leahy, M. (2010). A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, 87(4), 1059–1082.

    Article  Google Scholar 

  • Connolly, D., Lund, H., Mathiesen, B. V., & Leahy, M. (2011). The first step towards a 100 % renewable energy-system for Ireland. Applied Energy, 88(2), 502–507.

    Article  Google Scholar 

  • Delarue, E., Bekaert, D., Belmans, R., & D’Haeseleer, W. (2009). Development of a comprehensive electricity generation simulation model using a mixed-integer programming approach. TME working paper–energy and environment. KULeuven Energy Institute. Retrieved March 23, 2015 from http://www.mech.kuleuven.be/en/tme/research/energy_environment/Pdf/WPEN2007-09.

  • Delarue, E. D., Luickx, P. J., & D’haeseleer, W. D. (2009b). The actual effect of wind power on overall electricity generation costs and CO2 emissions. Energy Conversion and Management, 50(6), 1450–1456.

    Article  Google Scholar 

  • Flores, J. R., Montagna, J. M., & Vecchietti, A. (2014). An optimization approach for long term investments planning in energy. Applied Energy, 122, 162–178.

    Article  Google Scholar 

  • GAMS Development Corporation (2015). A user’s guide. Washington, DC. Retrieved March 23, 2015 from http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf.

  • Gouveia, J. P., Dias, L., Martins, I., & Seixas, J. (2014). Effects of renewables penetration on the security of Portuguese electricity supply. Applied Energy, 123, 438–447.

    Article  Google Scholar 

  • Han, J. H., & Lee, I. B. (2011). Development of a scalable infrastructure model for planning electricity generation and CO2 mitigation strategies under mandated reduction of GHG emission. Applied Energy, 88(12), 5056–5068.

    Article  Google Scholar 

  • Hellenic Electricity Market Operator S.A. (LAGIE). (2012). DAS Monthly Reports. Piraeus, Greece. Retrieved February 05, 2015 from http://www.lagie.gr/fileadmin/groups/EDRETH/DAS_Monthly_Reports/DASMonthlyReport_December2012.pdf.

  • Hellenic Electricity Market Operator S.A. (LAGIE). (2013). DAS Monthly Reports. Piraeus, Greece. Retrieved February 05, 2015 from http://www.lagie.gr/fileadmin/groups/EDRETH/DAS_Monthly_Reports/201312_DAS_Monthly_Report.pdf.

  • Hellenic Electricity Market Operator S.A. (LAGIE). (2012). RES & CHP Monthly Statistics. Piraeus, Greece. Retrieved February 05, 2015 from http://www.lagie.gr/fileadmin/groups/EDRETH/RES/2012_12_EN_MONTHLY_RES.pdf.

  • Hellenic Electricity Market Operator S.A. (LAGIE). (2013). RES & CHP Monthly Statistics. Piraeus, Greece. Retrieved February 05, 2015 from http://www.lagie.gr/fileadmin/groups/EDRETH/RES/2013_12_GR_MONTHLY_RES.pdf.

  • Hellenic Independent Power Transmission Operator S.A. (IPTO). (2014). Operations & Data. Athens, Greece. Retrieved February 01, 2015 from http://www.admie.gr/nc/en/home/.

  • Hellenic Independent Power Transmission Operator S.A. (IPTO). (2013). A study for the capacity assurance of the Greek power system for the period 2013–2020. Athens, Greece. Retrieved February 02, 2015 from http://www.admie.gr/fileadmin/groups/EDAS_DSS/Meleti_eparkeias_final.pdf.

  • Hobbs, B. (1995). Optimization methods for electric utility resource planning. European Journal of Operational Research, 83(1), 1–20.

    Article  MATH  Google Scholar 

  • Kagiannas, A., Askounis, D., & Psarras, J. (2004). Power generation planning: A survey from monopoly to competition. International Journal of Electrical Power and Energy Systems, 26(6), 413–421.

    Article  Google Scholar 

  • Kannan, R., & Turton, H. (2013). A long-term electricity dispatch model with the TIMES framework. Environment Modeling and Assessment, 18(3), 325–343.

    Article  Google Scholar 

  • Koltsaklis, N. E., & Georgiadis, M. C. (2015). A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints. Applied Energy, 158, 310–331.

    Article  Google Scholar 

  • Koltsaklis, N. E., Dagoumas, A. S., Kopanos, G. M., Pistikopoulos, E. N., & Georgiadis, M. C. (2014). A spatial multi-period long-term energy planning model: A case study of the Greek power system. Applied Energy, 115, 456–482.

    Article  Google Scholar 

  • Koltsaklis, N. E., Liu, P., & Georgiadis, M. C. (2015). An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response. Energy, 82, 865–888.

    Article  Google Scholar 

  • Li, Y. P., Huang, G. H., & Chen, X. (2011). Planning regional energy system in association with greenhouse gas mitigation under uncertainty. Applied Energy, 88, 599–611.

    Article  Google Scholar 

  • Manfren, M., Caputo, P., & Costa, G. (2011). Paradigm shift in urban energy systems through distributed generation: Methods and models. Applied Energy, 88, 1032–1048.

    Article  Google Scholar 

  • Ming, Z., Kun, Z., & Liang, W. (2014). Study on unit commitment problem considering wind power and pumped hydro energy storage. International Journal of Electrical Power and Energy Systems, 63, 91–96.

    Article  Google Scholar 

  • Palmintier, B., & Webster, M. (2011). Impact of unit commitment constraints on generation expansion planning with renewables. IEEE Power and Energy Society General Meeting, 2011, 1–7.

    Article  Google Scholar 

  • Palmintier, B. S. (2013). Incorporating operational flexibility into electric generation planning: Impacts and methods for system design and policy analysis. PhD Thesis. Massachusetts Institute of Technology.

    Google Scholar 

  • Purvins, A., Zubaryeva, A., Llorente, M., Tzimas, E., & Mercier, A. (2011). Challenges and options for a large wind power uptake by the European electricity system. Applied Energy, 88(5), 1461–1469.

    Article  Google Scholar 

  • Timilsina, G. R., Cornelis van Kooten, G., & Narbel, P. A. (2013). Global wind power development: Economics and policies. Energy Policy, 61, 642–652.

    Article  Google Scholar 

  • Van den Bergh, K., Delarue, E., & D’Haeseleer, W. (2013). Impact of renewables deployment on the CO2 price and the CO2 emissions in the European electricity sector. Energy Policy, 63, 1021–1031.

    Article  Google Scholar 

  • Xiao, J., Hodge, B.-M. S., Pekny, J. F., & Reklaitis, G. V. (2011). Operating reserve policies with high wind power penetration. Computers and Chemical Engineering, 35(9), 1876–1885.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the European Commission’s Marie Curie IRSES project (Contract No: PIRSES-GA-2011-294987) “Energy Systems Engineering” (ESE) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Georgiadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koltsaklis, N.E., Kopanos, G.M., Georgiadis, M.C. (2017). An Optimization Framework for Power Systems Planning Considering Unit Commitment Constraints. In: Kopanos, G., Liu, P., Georgiadis, M. (eds) Advances in Energy Systems Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-42803-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42803-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42802-4

  • Online ISBN: 978-3-319-42803-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics