Skip to main content

The Circuitry Underlying the Reinstatement of Cocaine Seeking: Modulation by Deep Brain Stimulation

  • Chapter
  • First Online:
The Basal Ganglia

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

  • 1784 Accesses

Abstract

Cocaine addiction in humans is characterized by persistent relapse vulnerability following detoxification. Relapse to drug taking can be precipitated by several factors: stress, re-exposure to drug-associated environmental cues, and re-exposure to the drug itself. Preclinical studies have focused on cocaine reinstatement, an animal model of relapse, to achieve a greater understanding of the underlying anatomical, neurobiological, and neurochemical bases of cocaine craving and relapse. Here, we review how changes in dopaminergic and glutamatergic transmission in mesocorticolimbic nuclei contribute to the reinstatement of cocaine seeking. This information can be used to elucidate which nuclei may prove effective therapeutic targets for deep brain stimulation (DBS) as a treatment for cocaine craving and relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alleweireldt AT, Hobbs RJ, Taylor AR et al (2006) Effects of SCH-23390 infused into the amygdala or adjacent cortex and basal ganglia on cocaine seeking and self-administration in rats. Neuropsychopharmacology 31:363–374. doi:10.1038/sj.npp.1300794

    Article  PubMed  Google Scholar 

  • Anderson SM, Bari AA, Pierce RC (2003) Administration of the D1-like dopamine receptor antagonist SCH-23390 into the medial nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug-seeking behavior in rats. Psychopharmacology 168:132–138

    Article  PubMed  Google Scholar 

  • Anderson SM, Schmidt HD, Pierce RC (2005) Administration of the D2 dopamine receptor antagonist sulpiride into the shell, but not the core, of the nucleus accumbens attenuates cocaine priming-induced reinstatement of drug seeking. Neuropsychopharmacology 31:1452–1461. doi:10.1038/sj.npp.1300922

    Article  PubMed  Google Scholar 

  • Anderson SM, Famous KR, Sadri-Vakili G et al (2008) CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat Neurosci 11:344–353. doi:10.1038/nn2054

    Article  PubMed  Google Scholar 

  • Bachtell RK, Whisler K, Karanian D et al (2005) Administration of the D1-like dopamine receptor antagonist SCH-23390 into the medial nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug-seeking behavior in rats. Psychopharmacology 183:132–138. doi:10.1007/s00213-005-0133-1

    Article  Google Scholar 

  • Bäckström P, Hyytiä P (2006) Ionotropic and metabotropic glutamate receptor antagonism attenuates cue-induced cocaine seeking. Neuropsychopharmacology 31:778–786

    Article  PubMed  Google Scholar 

  • Bäckström P, Hyytiä P (2007) Involvement of AMPA/kainate, NMDA, and mGlu5 receptors in the nucleus accumbens core in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology 192:571–580. doi:10.1007/s00213-007-0753-8

    Article  PubMed  Google Scholar 

  • Baker DA, McFarland K, Lake RW et al (2003) Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 6:743–749

    Article  PubMed  Google Scholar 

  • Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217. doi:10.1124/pr.110.002642

    Article  PubMed  Google Scholar 

  • Berendse HW, Groenewegen HJ, Lohman AH (1992) Compartmental distribution of ventral striatal neurons projecting to the mesencephalon in the rat. J Neurosci 12:2079–2103

    PubMed  Google Scholar 

  • Berglind WJ, Case JM, Parker MP et al (2006) Dopamine D1 or D2 receptor antagonism within the basolateral amygdala differentially alters the acquisition of cocaine-cue associations necessary for cue-induced reinstatement of cocaine-seeking. Neuroscience 137:699–706

    Article  PubMed  Google Scholar 

  • Blaha CD, Yang CR, Floresco SB et al (1997) Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. Eur J Neurosci 9:902–911

    Article  PubMed  Google Scholar 

  • Bossert JM, Ghitza UE, Lu L et al (2005) Neurobiology of relapse to heroin and cocaine seeking: an update and clinical implications. Eur J Pharmacol 526:36–50

    Article  PubMed  Google Scholar 

  • Bossert JM, Marchant NJ, Calu DJ et al (2013) The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology 229:453–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Britt JP, Benaliouad F, McDevitt RA et al (2012) Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76:790–803

    Article  PubMed  PubMed Central  Google Scholar 

  • Brog JS, Salyapongse A, Deutch AY et al (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278

    Article  PubMed  Google Scholar 

  • Capriles N, Rodaros D, Sorge RE et al (2003) A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology 168:66–74

    Article  PubMed  Google Scholar 

  • Carlezon WA, Wise RA (1996) Rewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex. J Neurosci 16(9):3112–3122

    PubMed  Google Scholar 

  • Carroll KM, Rounsaville BJ, Nich C et al (1994) One-year follow-up of psychotherapy and pharmacotherapy for cocaine dependence. Arch Gen Psychiatry 51:989–997

    Article  PubMed  Google Scholar 

  • Chambers RA, Self DW (2002) Motivational responses to natural and drug rewards in rats with neonatal ventral hippocampal lesions: an animal model of dual diagnosis schizophrenia. Neuropsychopharmacology 27:889–905

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciccocioppo R, Sanna PP, Weiss F (2001) Cocaine-predictive stimulus induces drug-seeking behavior and neural activation in limbic brain regions after multiple months of abstinence: reversal by D(1) antagonists. Proc Natl Acad Sci U S A 98:1976–1981

    Article  PubMed  PubMed Central  Google Scholar 

  • Conrad KL, Tseng KY, Uejima JL et al (2008) Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454:118–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornish JL, Kalivas PW (2000) Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci 20:RC89

    PubMed  Google Scholar 

  • Cornish JL, Duffy P, Kalivas PW (1999) A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 93:1359–1367

    Article  PubMed  Google Scholar 

  • Creed M, Pascoli VJ, Luscher C (2015) Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347:659–664

    Article  PubMed  Google Scholar 

  • Crombag HS, Shaham Y (2002) Renewal of drug seeking by contextual cues after prolonged extinction in rats. Behav Neurosci 116:169

    Article  PubMed  Google Scholar 

  • De Vries TJ, Schoffelmeer ANM, Binnekade R et al (2002) Relapse to cocaine- and heroin-seeking behavior mediated by dopamine D2 receptors is time-dependent and associated with behavioral sensitization. Neuropsychopharmacology 26:18–26. doi:10.1016/s0893-133x(01)00293-7

    Article  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Ciano P (2001) Dissociable effects of antagonism of NMDA and AMPA/KA Receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacology 25:341–360

    Article  PubMed  Google Scholar 

  • Di Ciano P (2008) Drug seeking under a second-order schedule of reinforcement depends on dopamine D3 receptors in the basolateral amygdala. Behav Neurosci 122:129–139

    Article  PubMed  Google Scholar 

  • Di Ciano P, Everitt BJ (2004) Conditioned reinforcing properties of stimuli paired with self-administered cocaine, heroin or sucrose: implications for the persistence of addictive behavior. Neuropharmacology 47(Suppl 1):202–213. doi:10.1016/j.neuropharm.2004.06.005

    Article  PubMed  Google Scholar 

  • Ding DC, Gabbott PL, Totterdell S (2001) Differences in the laminar origin of projections from the medial prefrontal cortex to the nucleus accumbens shell and core regions in the rat. Brain Res 917:81–89

    Article  PubMed  Google Scholar 

  • Fallon JH, Koziell DA, Moore RY (1978) Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex. J Comp Neurol 180(3):509–532. doi:10.1002/cne.901800308

    Article  PubMed  Google Scholar 

  • Famous KR, Kumaresan V, Sadri-Vakili G et al (2008) Phosphorylation-dependent trafficking of GluR2-containing AMPA receptors in the nucleus accumbens plays a critical role in the reinstatement of cocaine seeking. J Neurosci 28:11061–11070

    Article  PubMed  PubMed Central  Google Scholar 

  • Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19. doi:10.1016/j.neuron.2009.11.031

    Article  PubMed  PubMed Central  Google Scholar 

  • Feltenstein MW, See RE (2007) NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse. Neurobiol Learn Mem 88(4):435–444. doi:10.1016/j.nlm.2007.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrario CR, Li X, Wang X et al (2010) The role of glutamate receptor redistribution in locomotor sensitization to cocaine. Neuropsychopharmacology 35:818–833

    Article  PubMed  Google Scholar 

  • Fischer KD, Houston ACW, Rebec GV (2013) Role of the major glutamate transporter GLT1 in nucleus accumbens core versus shell in cue-induced cocaine-seeking behavior. J Neurosci 33:9319–9327

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedman DP, Aggleton JP, Saunders RC (2002) Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain. J Comp Neurol 450:345–365

    Article  PubMed  Google Scholar 

  • Fuchs RA, Evans KA, Parker MC et al (2004) Differential involvement of the core and shell subregions of the nucleus accumbens in conditioned cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology 176:459–465. doi:10.1007/s00213-004-1895-6

    Article  PubMed  Google Scholar 

  • Fuchs RA, Evans KA, Ledford CC et al (2005) The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 30:296–309

    Article  PubMed  Google Scholar 

  • Fuchs RA, Feltenstein MW, See RE (2006) The role of the basolateral amygdala in stimulus-reward memory and extinction memory consolidation and in subsequent conditioned cued reinstatement of cocaine seeking. Eur J Neurosci 23:2809–2813

    Article  PubMed  Google Scholar 

  • Fuchs RA, Eaddy JL, Su ZI et al (2007) Interactions of the basolateral amygdala with the dorsal hippocampus and dorsomedial prefrontal cortex regulate drug context-induced reinstatement of cocaine-seeking in rats. Eur J Neurosci 26:487–498

    Article  PubMed  Google Scholar 

  • Fuchs RA, Ramirez DR, Bell GH (2008) Nucleus accumbens shell and core involvement in drug context-induced reinstatement of cocaine seeking in rats. Psychopharmacology 200:545–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabriele A, See RE (2010) Reversible inactivation of the basolateral amygdala, but not the dorsolateral caudate putamen, attenuates consolidation of cocaine-cue associative learning in a reinstatement model of drug-seeking. Eur J Neurosci 32:1024–1029. doi:10.1111/j.1460-9568.2010.07394

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasbarri A, Packard MG, Campana E et al (1994a) Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat. Brain Res Bull 33:445–452

    Article  PubMed  Google Scholar 

  • Gasbarri A, Verney C, Innocenzi R et al (1994b) Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res 668:71–79

    Article  PubMed  Google Scholar 

  • Gipson CD, Kupchik YM, Shen H et al (2013) Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron 77:867–872

    Article  PubMed  PubMed Central  Google Scholar 

  • Graf EN, Wheeler RA, Baker DA et al (2013) Corticosterone acts in the nucleus accumbens to enhance dopamine signaling and potentiate reinstatement of cocaine seeking. J Neurosci 33:11800–11810

    Article  PubMed  PubMed Central  Google Scholar 

  • Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci U S A 87:6912–6916

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimm J (2000) Dissociation of primary and secondary reward-relevant limbic nuclei in an animal model of relapse. Neuropsychopharmacology 22:473–479

    Article  PubMed  Google Scholar 

  • Groenewegen HJ (2003) The basal ganglia and motor control. Neural Plast 10:107–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Groenewegen HJ, Vermeulen-Van der Zee E, Kortschotte A et al (1987) Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 23:103–120

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AV et al (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63

    Article  PubMed  Google Scholar 

  • Guercio LA, Schmidt HD, Pierce RC (2015) Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats. Behav Brain Res 281:125–130

    Article  PubMed  Google Scholar 

  • Hayes RJ, Vorel SR, Spector J et al (2003) Electrical and chemical stimulation of the basolateral complex of the amygdala reinstates cocaine-seeking behavior in the rat. Psychopharmacology 168:75–83

    Article  PubMed  Google Scholar 

  • Hearing MC, Schochet TL, See RE et al (2010) Context-driven cocaine-seeking in abstinent rats increases activity-regulated gene expression in the basolateral amygdala and dorsal hippocampus differentially following short and long periods of abstinence. Neuroscience 170:570–579

    Article  PubMed  PubMed Central  Google Scholar 

  • Hearing M, Kotecki L, de Velasco EMF (2013) Repeated cocaine weakens GABAB-Girk signaling in layer 5/6 pyramidal neurons in the prelimbic cortex. Neuron 80:159–170

    Article  PubMed  PubMed Central  Google Scholar 

  • Heidbreder CA, Groenewegen HJ, Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579

    Article  PubMed  Google Scholar 

  • Heimer L, Zahm DS, Churchill L et al (1991) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41:89–125

    Article  PubMed  Google Scholar 

  • Heimer L, Alheid GF, de Olmos JS et al (1997) The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci 9:354–381. doi:10.1176/jnp.9.3.354

    Article  PubMed  Google Scholar 

  • Henke PG (1990) Hippocampal pathway to the amygdala and stress ulcer development. Brain Res Bull 25:691–695

    Article  PubMed  Google Scholar 

  • Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149–179. doi:10.1007/s00429-007-0150-4

    Article  PubMed  Google Scholar 

  • Hotsenpiller G, Giorgetti M, Wolf ME (2001) Alterations in behaviour and glutamate transmission following presentation of stimuli previously associated with cocaine exposure. Eur J Neurosci 14(11):1843–1855

    Article  PubMed  Google Scholar 

  • Hume RI, Dingledine R, Heinemann SF (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253:1028–1031

    Article  PubMed  Google Scholar 

  • Ito R, Robbins TW, Everitt BJ (2004) Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 7:389–397

    Article  PubMed  Google Scholar 

  • Jaffe JH, Cascella NG, Kumor KM et al (1989) Cocaine-induced cocaine craving. Psychopharmacology 97(1):59–64

    Article  PubMed  Google Scholar 

  • Jones S, Bonci A (2005) Synaptic plasticity and drug addiction. Curr Opin Pharmacol 5(1):20–25. doi:10.1016/j.coph.2004.08.011

    Article  PubMed  Google Scholar 

  • Kalivas PW, O’Brien C (2008) Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 33:166–180

    Article  PubMed  Google Scholar 

  • Kantak KM, Black Y, Valencia E et al (2002) Dissociable effects of lidocaine inactivation of the rostral and caudal basolateral amygdala on the maintenance and reinstatement of cocaine-seeking behavior in rats. J Neurosci 22:1126–1136

    PubMed  Google Scholar 

  • Karlsson R-M, Kircher DM, Shaham Y, O’Donnell P (2013) Exaggerated cue-induced reinstatement of cocaine seeking but not incubation of cocaine craving in a developmental rat model of schizophrenia. Psychopharmacology 226:45–51

    Article  PubMed  Google Scholar 

  • Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8(11):844–858. doi:10.1038/nrn2234

    Article  PubMed  Google Scholar 

  • Khroyan TV, Barrett-Larimore RL, Rowlett JK et al (2000) Dopamine D1- and D2-like receptor mechanisms in relapse to cocaine-seeking behavior: effects of selective antagonists and agonists. J Pharmacol Exp Ther 294:680–687

    PubMed  Google Scholar 

  • Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171(2):157–191. doi:10.1002/cne.901710204

    Article  PubMed  Google Scholar 

  • Kufahl PR, Zavala AR, Singh A et al (2009) c-Fos expression associated with reinstatement of cocaine-seeking behavior by response-contingent conditioned cues. Synapse 63:823–835

    Article  PubMed  PubMed Central  Google Scholar 

  • LaLumiere RT, Niehoff KE, Kalivas PW (2010) The infralimbic cortex regulates the consolidation of extinction after cocaine self-administration. Learn Mem 17:168–175

    Article  PubMed  PubMed Central  Google Scholar 

  • LaLumiere RT, Smith KC, Kalivas PW (2012) Neural circuit competition in cocaine-seeking: roles of the infralimbic cortex and nucleus accumbens shell. Eur J Neurosci 35:614–622

    Article  PubMed  PubMed Central  Google Scholar 

  • Lasseter HC, Xie X, Ramirez DR, Fuchs RA (2010) Sub-region specific contribution of the ventral hippocampus to drug context-induced reinstatement of cocaine-seeking behavior in rats. Neuroscience 171:830–839

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee B, Tiefenbacher S, Platt DM, Spealman RD (2004) Pharmacological blockade of alpha2-adrenoceptors induces reinstatement of cocaine-seeking behavior in squirrel monkeys. Neuropsychopharmacology 29:686–693

    Article  PubMed  Google Scholar 

  • Lee JLC, Milton AL, Everitt BJ (2006) Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. J Neurosci 26:5881–5887

    Article  PubMed  Google Scholar 

  • Lee BR, Ma Y-Y, Huang YH et al (2013) Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci 16:1644–1651

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y-Y, Lee BR, Wang X et al (2014) Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 83:1453–1467

    Article  PubMed  PubMed Central  Google Scholar 

  • Mameli M, Halbout B, Creton C et al (2009) Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat Neurosci 12:1036–1041

    Article  PubMed  Google Scholar 

  • Mashhoon Y, Tsikitas LA, Kantak KM (2009) Dissociable effects of cocaine-seeking behavior following D1 receptor activation and blockade within the caudal and rostral basolateral amygdala in rats. Eur J Neurosci 29:1641–1653

    Article  PubMed  PubMed Central  Google Scholar 

  • Mashhoon Y, Wells AM, Kantak KM (2010) Interaction of the rostral basolateral amygdala and prelimbic prefrontal cortex in regulating reinstatement of cocaine-seeking behavior. Pharmacol Biochem Behav 96:347–353

    Article  PubMed  PubMed Central  Google Scholar 

  • McCracken CB, Grace AA (2007) High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. J Neurosci 27:12601–12610

    Article  PubMed  Google Scholar 

  • McCutcheon JE, Wang X, Tseng KY et al (2011) Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine. J Neurosci 31:5737–5743

    Article  PubMed  PubMed Central  Google Scholar 

  • McFarland K, Kalivas PW (2001) The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 21:8655–8663

    PubMed  Google Scholar 

  • McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23:3531–3537

    PubMed  Google Scholar 

  • McFarland K, Davidge SB, Lapish CC et al (2004) Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 24:1551–1560

    Article  PubMed  Google Scholar 

  • McLaughlin J, See RE (2003) Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology 168(1-2):57–65. doi:10.1007/s00213-002-1196-x

    Article  PubMed  Google Scholar 

  • Meil WM, See RE (1996) Conditioned cued recovery of responding following prolonged withdrawal from self-administered cocaine in rats: an animal model of relapse. Behav Pharmacol 7(8):754–763

    PubMed  Google Scholar 

  • Meil WM, See RE (1997) Lesions of the basolateral amygdala abolish the ability of drug associated cues to reinstate responding during withdrawal from self-administered cocaine. Behav Brain Res 87(2):139–148

    Article  PubMed  Google Scholar 

  • Marchant NJ, Kaganovsky K, Shaham Y, Bossert JM (2015) Role of corticostriatal circuits in contextinduced reinstatement of drug seeking. Brain Res 1628A: 219–232.

    Google Scholar 

  • Meredith GE, Agolia R, Arts MP et al (1992) Morphological differences between projection neurons of the core and shell in the nucleus accumbens of the rat. Neuroscience 50:149–162

    Article  PubMed  Google Scholar 

  • Missale C, Nash SR, Robinson SW et al (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225

    PubMed  Google Scholar 

  • Moser MB, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8:608–619

    Article  PubMed  Google Scholar 

  • Moser MB, Moser EI, Forrest E et al (1995) Spatial learning with a minislab in the dorsal hippocampus. Proc Natl Acad Sci U S A 92:9697–9701

    Article  PubMed  PubMed Central  Google Scholar 

  • Neisewander JL, Baker DA, Fuchs RA et al (2000) Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. J Neurosci 20:798–805

    PubMed  Google Scholar 

  • O’Brien CP (1997) A range of research-based pharmacotherapies for addiction. Science 278(5335):66–70

    Article  PubMed  Google Scholar 

  • O’Brien CP, Childress AR, McLellan AT et al (1992) Classical conditioning in drug-dependent humans. Ann N Y Acad Sci 654:400–415

    Article  PubMed  Google Scholar 

  • Park W-K, Bari AA, Jey AR et al (2002) Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus accumbens. J Neurosci 22:2916–2925

    PubMed  Google Scholar 

  • Pascoli V, Terrier J, Espallergues J et al (2014) Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509:459–464

    Article  PubMed  Google Scholar 

  • Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28:6046–6053

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillipson OT, Griffiths AC (1985) The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16:275–296

    Article  PubMed  Google Scholar 

  • Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30:215–238

    Article  PubMed  Google Scholar 

  • Pierce RC, Bell K, Duffy P et al (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J Neurosci 16:1550–1560

    PubMed  Google Scholar 

  • Ping A, Xi J, Prasad BM, Wang MH et al (2008) Contributions of nucleus accumbens core and shell GluR1 containing AMPA receptors in AMPA- and cocaine-primed reinstatement of cocaine-seeking behavior. Brain Res 1215:173–182. doi:10.1016/j.brainres.2008.03.088

    Article  PubMed  PubMed Central  Google Scholar 

  • Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci U S A 92:12304–12308

    Article  PubMed  PubMed Central  Google Scholar 

  • Raybuck JD, Lattal KM (2014) Differential effects of dorsal hippocampal inactivation on expression of recent and remote drug and fear memory. Neurosci Lett 569:1–5. doi:10.1016/j.neulet.2014.02.063

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritz MC, Cone EJ, Kuhar MJ (1990) Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: a structure-activity study. Life Sci 46:635–645

    Article  PubMed  Google Scholar 

  • Rogers JL, See RE (2007) Selective inactivation of the ventral hippocampus attenuates cue-induced and cocaine-primed reinstatement of drug-seeking in rats. Neurobiol Learn Mem 87:688–692

    Article  PubMed  PubMed Central  Google Scholar 

  • Rueter SM, Burns CM, Coode SA et al (1995) Glutamate receptor RNA editing in vitro by enzymatic conversion of adenosine to inosine. Science 267:1491–1494

    Article  PubMed  Google Scholar 

  • SAMHSA (2012) Results from the 2011 National Survey on Drug Use and Health: National Findings. Office of Applied Studies, NSDUH Series H-44, Rockville

    Google Scholar 

  • Sari Y, Smith KD, Ali PK, Rebec GV (2009) Upregulation of GLT1 attenuates cue-induced reinstatement of cocaine-seeking behavior in rats. J Neurosci 29:9239–9243

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenk S (2002) Effects of GBR 12909, WIN 35,428 and indatraline on cocaine self-administration and cocaine seeking in rats. Psychopharmacology 160:263–270

    Article  PubMed  Google Scholar 

  • Schmidt HD, Pierce RC (2006) Cooperative activation of D1-like and D2-like dopamine receptors in the nucleus accumbens shell is required for the reinstatement of cocaine-seeking behavior in the rat. Neuroscience 142:451–461

    Article  PubMed  Google Scholar 

  • Schmidt HD, Pierce RC (2010) Cocaine-induced neuroadaptations in glutamate transmission. Ann N Y Acad Sci 1187:35–75. doi:10.1111/j.1749-6632.2009.05144.x

    Article  PubMed  Google Scholar 

  • Schmidt HD, Anderson SM, Pierce RC (2006) Stimulation of D1-like or D2 dopamine receptors in the shell, but not the core, of the nucleus accumbens reinstates cocaine-seeking behaviour in the rat. Eur J Neurosci 23:219–228. doi:10.1111/j.1460-9568.2005.04524.x

    Article  PubMed  Google Scholar 

  • See RE (2005) Neural substrates of cocaine-cue associations that trigger relapse. Eur J Pharmacol 526:140–146

    Article  PubMed  Google Scholar 

  • See RE, Kruzich PJ, Grimm JW (2001) Dopamine, but not glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a rat model of relapse to cocaine-seeking behavior. Psychopharmacology 154:301–310

    Article  PubMed  Google Scholar 

  • Self DW, Barnhart WJ, Lehman DA et al (1996) Opposite modulation of cocaine-seeking behavior by D1- and D2-like dopamine receptor agonists. Science 271(5255):1586–1589

    Article  PubMed  Google Scholar 

  • Self DW, Karanian DA, Spencer JJ (2000) Effects of the novel D1 dopamine receptor agonist ABT-431 on cocaine self-administration and reinstatement. Ann N Y Acad Sci 909:133–144

    Article  PubMed  Google Scholar 

  • Shaham Y, Hope BT (2005) The role of neuroadaptations in relapse to drug seeking. Nat Neurosci 8(11):1437–1439. doi:10.1038/nn1105-1437

    Article  PubMed  Google Scholar 

  • Shaham Y, Stewart J (1995) Stress reinstates heroin-seeking in drug-free animals: an effect mimicking heroin, not withdrawal. Psychopharmacology 119:334–341

    Article  PubMed  Google Scholar 

  • Shalev U, Highfield D, Yap J, Shaham Y (2000) Stress and relapse to drug seeking in rats: studies on the generality of the effect. Psychopharmacology 150:337–346

    Article  PubMed  Google Scholar 

  • Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54(1):1–42

    Article  PubMed  Google Scholar 

  • Sinha R, Catapano D, O’Malley S (1999) Stress-induced craving and stress response in cocaine dependent individuals. Psychopharmacology 142:343–351

    Article  PubMed  Google Scholar 

  • Sondheimer I, Knackstedt LA (2011) Ceftriaxone prevents the induction of cocaine sensitization and produces enduring attenuation of cue- and cocaine-primed reinstatement of cocaine-seeking. Behav Brain Res 225(1):252–258. doi:10.1016/j.bbr.2011.07.041

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefanik MT, Kalivas PW (2013) Optogenetic dissection of basolateral amygdala projections during cue-induced reinstatement of cocaine seeking. Front Behav Neurosci 7:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefanik MT, Moussawi K, Kupchik YM, Smith KC, Miller RL, Huff ML, Deisseroth K, Kalivas PW, LaLumiere RT (2013) Optogenetic inhibition of cocaine seeking in rats. Addict Biol 18:50–53

    Article  PubMed  Google Scholar 

  • Steketee JD (2003) Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Res Brain Res Rev 41:203–228

    Article  PubMed  Google Scholar 

  • Stuber GD, Sparta DR, Stamatakis AM et al (2011) Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475:377–380

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, Rebec GV (2003) Lidocaine inactivation of ventral subiculum attenuates cocaine-seeking behavior in rats. J Neurosci 23:10258–10264

    PubMed  Google Scholar 

  • Sun W, Rebec GV (2006) Repeated cocaine self-administration alters processing of cocaine-related information in rat prefrontal cortex. J Neurosci 26:8004–8008

    Article  PubMed  Google Scholar 

  • Swanson LW, Cowan WM (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172(1):49–84. doi:10.1002/cne.901720104

    Article  PubMed  Google Scholar 

  • Taepavarapruk P, Floresco SB, Phillips AG (2000) Hyperlocomotion and increased dopamine efflux in the rat nucleus accumbens evoked by electrical stimulation of the ventral subiculum: role of ionotropic glutamate and dopamine D1 receptors. Psychopharmacology 151:242–251

    Article  PubMed  Google Scholar 

  • Tanaka H, Grooms SY, Bennett MV et al (2000) The AMPAR subunit GluR2: still front and center-stage. Brain Res 886:190–207

    Article  PubMed  Google Scholar 

  • Vassoler FM, Schmidt HD, Gerard ME et al (2008) Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug seeking in rats. J Neurosci 28:8735–8739

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassoler FM, Schmidt HD, Pierce RC (2009) Examination of the behavioral effects of deep brain stimulation of limbic nuclei in cocaine reinstatement. In: Society for neuroscience, 39th annual meeting, Chicago, Oct 2009

    Google Scholar 

  • Vassoler FM, White SL, Hopkins TJ et al (2013) Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation. J Neurosci 33:14446–14454

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinogradova OS (1995) Expression, control, and probable functional significance of the neuronal theta-rhythm. Prog Neurobiol 45:523–583

    Article  PubMed  Google Scholar 

  • Vorel SR (2001) Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science 292:1175–1178

    Article  PubMed  Google Scholar 

  • Vorel SR, Ashby CR, Paul M et al (2002) Dopamine D3 receptor antagonism inhibits cocaine-seeking and cocaine-enhanced brain reward in rats. J Neurosci 22:9595–9603

    PubMed  Google Scholar 

  • Weiss F, Maldonado-Vlaar CS, Parsons LH et al (2000) Control of cocaine-seeking behavior by drug-associated stimuli in rats: effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc Natl Acad Sci U S A 97:4321–4326

    Article  PubMed  PubMed Central  Google Scholar 

  • Wit H, Stewart J (1981) Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology 75(2):134–143

    Article  PubMed  Google Scholar 

  • Wright CI, Groenewegen HJ (1995) Patterns of convergence and segregation in the medial nucleus accumbens of the rat: relationships of prefrontal cortical, midline thalamic, and basal amygdaloid afferents. J Comp Neurol 361(3):383–403. doi:10.1002/cne.903610304

    Article  PubMed  Google Scholar 

  • Xie X, Ramirez DR, Lasseter HC et al (2010) Effects of mGluR1 antagonism in the dorsal hippocampus on drug context-induced reinstatement of cocaine-seeking behavior in rats. Psychopharmacology 208:1–11

    Article  PubMed  Google Scholar 

  • Xie X, Lasseter HC, Ramirez DR et al (2012) Subregion-specific role of glutamate receptors in the nucleus accumbens on drug context-induced reinstatement of cocaine-seeking behavior in rats. Addict Biol 17:287–299

    Article  PubMed  Google Scholar 

  • Xie X, Arguello AA, Wells AM et al (2013) Role of a hippocampal SRC-family kinase-mediated glutamatergic mechanism in drug context-induced cocaine seeking. Neuropsychopharmacology 38:2657–2665

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue Y-X, Xue L-F, Liu J-F et al (2014) Depletion of perineuronal nets in the amygdala to enhance the erasure of drug memories. J Neurosci 34:6647–6658

    Article  PubMed  Google Scholar 

  • Yun IA, Fields HL (2003) Basolateral amygdala lesions impair both cue- and cocaine-induced reinstatement in animals trained on a discriminative stimulus task. Neuroscience 121(3):747–757

    Article  PubMed  Google Scholar 

  • Zavala AR, Browning JR, Dickey ED et al (2008) Region-specific involvement of AMPA/Kainate receptors in Fos protein expression induced by cocaine-conditioned cues. Eur Neuropsychopharmacol 18:600–611

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Pruitt C, Shin CB et al (2014) Fos expression induced by cocaine-conditioned cues in male and female rats. Brain Struct Funct 219:1831–1840

    Article  PubMed  Google Scholar 

  • Ziółkowska B, Kiełbiński M, Gieryk A et al (2011) Regulation of the immediate-early genes arc and zif268 in a mouse operant model of cocaine seeking reinstatement. J Neural Transm 118:877–887

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Christopher Pierce Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guercio, L.A., Pierce, R.C. (2016). The Circuitry Underlying the Reinstatement of Cocaine Seeking: Modulation by Deep Brain Stimulation. In: Soghomonian, JJ. (eds) The Basal Ganglia. Innovations in Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-42743-0_17

Download citation

Publish with us

Policies and ethics