Skip to main content

Targeting PI3-Kinases in Modulating Autophagy and Anti-cancer Therapy

  • Chapter
  • First Online:
Targeting Autophagy in Cancer Therapy

Part of the book series: Current Cancer Research ((CUCR))

  • 598 Accesses

Abstract

Phosphoinositide 3-kinases (hereafter referred to as PI3-kinases) are lipid kinases that phosphorylate the 3′-hydroxyl group of inositol lipids. The generated phospholipids are critical signaling molecules that recruit proteins to specific intracellular membranes leading to localized activation of these proteins. PI3-kinases regulate many cellular activities, and are closely linked to human diseases, including cancer. One molecular event regulated by PI3-kinases is autophagy, an evolutionarily conserved membrane trafficking process that degrades and recycles cellular constituents to maintain cell and tissue homeostasis. Over the past two decades, our understanding of PI3-kinases has progressed from pan-PI3-kinase inhibitor studies to isoform-specific genetic knockout and systems biology interactome analyses. Our view of autophagy has emerged from unicellular yeast vesicle trafficking to mammalian physiology and human diseases. In this chapter we summarize the major discoveries on autophagy regulation by PI3-kinases and discuss the therapeutic potentials of targeting PI3-kinases in modulating autophagy and in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaravadi, R. K., Lippincott-Schwartz, J., Yin, X. M., Weiss, W. A., Takebe, N., Timmer, W., et al. (2011). Principles and current strategies for targeting autophagy for cancer treatment. Clinical Cancer Research, 17, 654–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P., & Cantley, L. C. (1989). PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell, 57, 167–175.

    Article  CAS  PubMed  Google Scholar 

  • Blommaart, E. F., Krause, U., Schellens, J. P., Vreeling-Sindelarova, H., & Meijer, A. J. (1997). The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. European Journal of Biochemistry, 243, 240–246.

    Article  CAS  PubMed  Google Scholar 

  • Burgering, B. M., & Coffer, P. J. (1995). Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature, 376, 599–602.

    Article  CAS  PubMed  Google Scholar 

  • Cantley, L. C. (2002). The phosphoinositide 3-kinase pathway. Science, 296, 1655–1657.

    Article  CAS  PubMed  Google Scholar 

  • Christoforidis, S., Miaczynska, M., Ashman, K., Wilm, M., Zhao, L., Yip, S. C., et al. (1999). Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biology, 1, 249–252.

    Article  CAS  PubMed  Google Scholar 

  • Ciraolo, E., Iezzi, M., Marone, R., Marengo, S., Curcio, C., Costa, C., et al. (2008). Phosphoinositide 3-kinase p110beta activity: Key role in metabolism and mammary gland cancer but not development. Science Signaling, 1, ra3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dou, Z., Chattopadhyay, M., Pan, J. A., Guerriero, J. L., Jiang, Y. P., Ballou, L. M., et al. (2010). The class IA phosphatidylinositol 3-kinase p110-beta subunit is a positive regulator of autophagy. Journal of Cell Biology, 191, 827–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou, Z., Pan, J. A., Dbouk, H. A., Ballou, L. M., DeLeon, J. L., Fan, Y., et al. (2013). Class IA PI3K p110beta subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation. Molecular Cell, 50, 29–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowdle, W. E., Nyfeler, B., Nagel, J., Elling, R. A., Liu, S., Triantafellow, E., et al. (2014). Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nature Cell Biology, 16, 1069–1079.

    Article  CAS  PubMed  Google Scholar 

  • Engelman, J. A., Luo, J., & Cantley, L. C. (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Reviews Genetics, 7, 606–619.

    Article  CAS  PubMed  Google Scholar 

  • Fan, W., Nassiri, A., & Zhong, Q. (2011). Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proceedings of the National Academy of Sciences of the United States of America, 108, 7769–7774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke, T. F., Yang, S. I., Chan, T. O., Datta, K., Kazlauskas, A., Morrison, D. K., et al. (1995). The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell, 81, 727–736.

    Article  CAS  PubMed  Google Scholar 

  • Fruman, D. A., & Rommel, C. (2014). PI3K and cancer: Lessons, challenges and opportunities. Nature Reviews Drug Discovery, 13, 140–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funderburk, S. F., Wang, Q. J., & Yue, Z. (2010). The Beclin 1-VPS34 complex—at the crossroads of autophagy and beyond. Trends in Cell Biology, 20, 355–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi, L., Pietrocola, F., Bravo-San Pedro, J. M., Amaravadi, R. K., Baehrecke, E. H., Cecconi, F., et al. (2015). Autophagy in malignant transformation and cancer progression. EMBO Journal, 34, 856–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geering, B., Cutillas, P. R., Nock, G., Gharbi, S. I., & Vanhaesebroeck, B. (2007). Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 104, 7809–7814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, S., Ramjaun, A. R., Haiko, P., Wang, Y., Warne, P. H., Nicke, B., et al. (2007). Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell, 129, 957–968.

    Article  CAS  PubMed  Google Scholar 

  • Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., et al. (2013). Autophagosomes form at ER-mitochondria contact sites. Nature, 495, 389–393.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins, P. T., Jackson, T. R., & Stephens, L. R. (1992). Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature, 358, 157–159.

    Article  CAS  PubMed  Google Scholar 

  • Herman, P. K., & Emr, S. D. (1990). Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Molecular and Cellular Biology, 10, 6742–6754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiles, I. D., Otsu, M., Volinia, S., Fry, M. J., Gout, I., Dhand, R., et al. (1992). Phosphatidylinositol 3-kinase: Structure and expression of the 110 kd catalytic subunit. Cell, 70, 419–429.

    Article  CAS  PubMed  Google Scholar 

  • Jaber, N., Dou, Z., Chen, J. S., Catanzaro, J., Jiang, Y. P., Ballou, L. M., et al. (2012). Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proceedings of the National Academy of Sciences of the United States of America, 109, 2003–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, S., Liu, Z., Zhang, S., Liu, P., Zhang, L., Lee, S. H., et al. (2008). Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature, 454, 776–779.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kihara, A., Kabeya, Y., Ohsumi, Y., & Yoshimori, T. (2001a). Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Reports, 2, 330–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kihara, A., Noda, T., Ishihara, N., & Ohsumi, Y. (2001b). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. Journal of Cell Biology, 152, 519–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Kim, Y. C., Fang, C., Russell, R. C., Kim, J. H., Fan, W., et al. (2013). Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell, 152, 290–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Kundu, M., Viollet, B., & Guan, K. L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 13, 132–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149, 274–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, C., Feng, P., Ku, B., Dotan, I., Canaani, D., Oh, B. H., et al. (2006). Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nature Cell Biology, 8, 688–699.

    Article  CAS  PubMed  Google Scholar 

  • Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402, 672–676.

    Article  CAS  PubMed  Google Scholar 

  • Liang, C., Lee, J. S., Inn, K. S., Gack, M. U., Li, Q., Roberts, E. A., et al. (2008). Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nature Cell Biology, 10, 776–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, S. Y., Li, T. Y., Liu, Q., Zhang, C., Li, X., Chen, Y., et al. (2012). GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science, 336, 477–481.

    Article  CAS  PubMed  Google Scholar 

  • Maehama, T., & Dixon, J. E. (1998). The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. Journal of Biological Chemistry, 273, 13375–13378.

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga, K., Morita, E., Saitoh, T., Akira, S., Ktistakis, N. T., Izumi, T., et al. (2010). Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. Journal of Cell Biology, 190, 511–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., et al. (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature Cell Biology, 11, 385–396.

    Article  CAS  PubMed  Google Scholar 

  • McAfee, Q., Zhang, Z., Samanta, A., Levi, S. M., Ma, X. H., Piao, S., et al. (2012). Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proceedings of the National Academy of Sciences of the United States of America, 109, 8253–8258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihaylova, M. M., & Shaw, R. J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology, 13, 1016–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, S., Tavshanjian, B., Oleksy, A., Perisic, O., Houseman, B. T., Shokat, K. M., et al. (2010). Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science, 327, 1638–1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers, M. P., Pass, I., Batty, I. H., Van der Kaay, J., Stolarov, J. P., Hemmings, B. A., et al. (1998). The lipid phosphatase activity of PTEN is critical for its tumor suppressor function. Proceedings of the National Academy of Sciences of the United States of America, 95, 13513–13518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J., & Codogno, P. (2000). Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. Journal of Biological Chemistry, 275, 992–998.

    Article  CAS  PubMed  Google Scholar 

  • Rangwala, R., Leone, R., Chang, Y. C., Fecher, L. A., Schuchter, L. M., Kramer, A., et al. (2014). Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy, 10, 1369–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravikumar, B., Imarisio, S., Sarkar, S., O’Kane, C. J., & Rubinsztein, D. C. (2008). Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. Journal of Cell Science, 121, 1649–1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronan, B., Flamand, O., Vescovi, L., Dureuil, C., Durand, L., Fassy, F., et al. (2014). A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nature Chemical Biology, 10, 1013–1019.

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld, M. R., Ye, X., Supko, J. G., Desideri, S., Grossman, S. A., Brem, S., et al. (2014). A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy, 10, 1359–1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rostislavleva, K., Soler, N., Ohashi, Y., Zhang, L., Pardon, E., Burke, J. E., et al. (2015). Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science, 350, aac7365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruderman, N. B., Kapeller, R., White, M. F., & Cantley, L. C. (1990). Activation of phosphatidylinositol 3-kinase by insulin. Proceedings of the National Academy of Sciences of the United States of America, 87, 1411–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schu, P. V., Takegawa, K., Fry, M. J., Stack, J. H., Waterfield, M. D., & Emr, S. D. (1993). Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science, 260, 88–91.

    Article  CAS  PubMed  Google Scholar 

  • Stephens, L., Anderson, K., Stokoe, D., Erdjument-Bromage, H., Painter, G. F., Holmes, A. B., et al. (1998). Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science, 279, 710–714.

    Article  CAS  PubMed  Google Scholar 

  • Stephens, L. R., Hughes, K. T., & Irvine, R. F. (1991). Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature, 351, 33–39.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Q., Fan, W., Chen, K., Ding, X., Chen, S., & Zhong, Q. (2008). Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proceedings of the National Academy of Sciences of the United States of America, 105, 19211–19216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traynor-Kaplan, A. E., Harris, A. L., Thompson, B. L., Taylor, P., & Sklar, L. A. (1988). An inositol tetrakisphosphate-containing phospholipid in activated neutrophils. Nature, 334, 353–356.

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck, B., Stephens, L., & Hawkins, P. (2012). PI3K signalling: The path to discovery and understanding. Nature Reviews Molecular Cell Biology, 13, 195–203.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R. C., Wei, Y., An, Z., Zou, Z., Xiao, G., Bhagat, G., et al. (2012). Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science, 338, 956–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, Y., Zou, Z., Becker, N., Anderson, M., Sumpter, R., Xiao, G., et al. (2013). EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell, 154, 1269–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitman, M., Downes, C. P., Keeler, M., Keller, T., & Cantley, L. (1988). Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature, 332, 644–646.

    Article  CAS  PubMed  Google Scholar 

  • Willinger, T., & Flavell, R. A. (2012). Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 109, 8670–8675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, K. K., Engelman, J. A., & Cantley, L. C. (2010). Targeting the PI3K signaling pathway in cancer. Current Opinion in Genetics and Development, 20, 87–90.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y. T., Tan, H. L., Shui, G., Bauvy, C., Huang, Q., Wenk, M. R., et al. (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. Journal of Biological Chemistry, 285, 10850–10861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, H. X., Russell, R. C., & Guan, K. L. (2013). Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy, 9, 1983–1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, Y., Wang, Q. J., Li, X., Yan, Y., Backer, J. M., Chait, B. T., et al. (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nature Cell Biology, 11, 468–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Xing Zong Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dou, Z., Zong, WX. (2016). Targeting PI3-Kinases in Modulating Autophagy and Anti-cancer Therapy. In: Yang, JM. (eds) Targeting Autophagy in Cancer Therapy. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-42740-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42740-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42738-6

  • Online ISBN: 978-3-319-42740-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics