Skip to main content

Short Bowel Syndrome: Intestinal Adaptation

  • Chapter
  • First Online:
Current Concepts of Intestinal Failure

Abstract

Despite the availability of total parenteral nutrition, advances in resuscitation, availability of potent antibiotics, and modern techniques of organ support, the morbidity of SBS remains strikingly high (Booth and Lander, Bailliere’s Clin Gastroenterol 12:739–772, 1998). The loss of functional small bowel surface area occasionally requires long-term parenteral nutrition. However, the key to survival after massive small bowel resection is the ability of the residual bowel to adapt. Although intestinal transplantation has emerged as a feasible alternative in the treatment of children with short bowel syndrome (SBS) during the last two decades, intestinal adaptation remains the only chance for survival in a subset of these patients. Intestinal adaptation is the term applied to progressive recovery from intestinal failure following a loss of intestinal length. The regulation of intestinal adaptation is maintained through a complex interaction of many different factors. These include nutrients and other luminal constituents, hormones, and peptide growth factors. The current chapter discusses the role of peptide growth factors on intestinal adaptation following massive small bowel resection. This review focuses on the mechanisms of action of peptide growth factors in intestinal cell proliferation. It also summarizes effects of these factors on intestinal regrowth in an animal model of short bowel syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SBS:

Short bowel syndrome

Caspase:

Cysteinyl-aspartate-acid-proteinase

TPN:

Total parenteral nutrition

LCFA:

Long-chain fatty acids

OKG:

Ornithine a-ketoglutarate

GH:

Growth hormone

GLP:

Glucagon-like peptide

EGF:

Epidermal growth factor

TGFβ:

Transforming growth factor β

IGF:

Insulin-like growth factor

FGF:

Fibroblast growth factor

HGF:

Hepatocyte growth factor

PDGF:

Platelet-derived growth factor

References

  1. Vanderhoof JA. Short bowel syndrome. Neonat Gastroenterol. 1996;23:377–86.

    CAS  Google Scholar 

  2. Booth IW, Lander AD. Short bowel syndrome. Bailliere’s Clin Gastroenterol. 1998;12:739–72.

    Article  CAS  Google Scholar 

  3. Sigalet DL. Short bowel syndrome in infants and children: an overview. Semin Pediatr Surg. 2001;10:49–55.

    Article  CAS  PubMed  Google Scholar 

  4. Coran AG, Spivak D, Teitelbaum DH. An analysis of the morbidity and mortality of short-bowel syndrome in the pediatric age group. Eur J Pediatr Surg. 1999;9:228–30.

    Article  CAS  PubMed  Google Scholar 

  5. Vanderhoof JA, Langnas AN. Short bowel syndrome in children and adults. Gastroenterology. 1997;113:1767–78.

    Article  CAS  PubMed  Google Scholar 

  6. Hylander E, Ladefoged K, Jarnum S. Nitrogen absorption following small intestinal resection. Scand J Gastroenterol. 1980;15:853–8.

    Article  CAS  PubMed  Google Scholar 

  7. Woolf GM, Miller C, Kurian R, Jeejeebhoy KN. Nutritional absorption in short bowel syndrome: evaluation of fluid, calorie, and divalent cation requirements. Dig Dis Sci. 1987;32:8–15.

    Article  CAS  PubMed  Google Scholar 

  8. Vanderhoof JA, Burkley KT, Antonson KT. Potential for mucosal adaptation following massive small bowel resection in 3-week-old versus 8-week-old rats. J Pediatr Gastroenterol Nutr. 1983;2:672–6.

    Article  CAS  PubMed  Google Scholar 

  9. Chiba T, Ohi R. Do we still need to collect stool? Evaluation of visualized fatty acid absorption: experimental studies using rats. J Parenter Enteral Nutr. 1998;22:22–6.

    Article  CAS  Google Scholar 

  10. Molina MT, Ruiz-Cutierrez V, Vazquez CM. Changes in uptake of linoleic acid and cholesterol by jejunal sacs of rats in vitro, after distal small bowel resection. Scand J Gastroenterol. 1990;25:613–21.

    Article  CAS  PubMed  Google Scholar 

  11. Tilson MD, Boyer JL, Wright HK. Jejunal absorption of bile salts after resection of the ileum. Surgery. 1975;77:231–4.

    CAS  PubMed  Google Scholar 

  12. Pitchumoni CS. Pancreas in primary malnutrition disorders. Am J Clin Nutr. 1973;26:374–9.

    CAS  PubMed  Google Scholar 

  13. Biller JA. Short bowel syndrome. In: Grand RI, Sutphen JL, Dietz WH, editors. Pediatric nutrition. Theory and practice. Stoneham: Butterworth; 1987. p. 481–7.

    Google Scholar 

  14. Haymond HE. Massive resection of the small intestine: analysis of 257 collected cases. Surg Gynecol Obstet. 1953;61:693–705.

    Google Scholar 

  15. Ladefoged K, Nicolaidou P, Jarnum S. Calcium, phosphorus, magnesium, zinc and nitrogen balance in patients with severe short bowel syndrome. Am J Clin Nutr. 1980;33:2137–44.

    CAS  PubMed  Google Scholar 

  16. Wolman SL, Anderson GH, Marliss EB, Jeejeebhoy KN. Zinc in total parenteral nutrition: requirements and metabolic effects. Gastroenterology. 1979;76:458–67.

    CAS  PubMed  Google Scholar 

  17. Ruppin H, Bar-Meir S, Soergel KH, Wood CM, Schmitt Jr MG. Absorption of short-chain fatty acids by the colon. Gastroenterology. 1980;78:1500–7.

    CAS  PubMed  Google Scholar 

  18. Mitchel JE, Breuer KI, Zuckerman L, Berlin J, Schilli L, Dunn JK. The colon influences ileal resection diarrhea. Dig Dis Sci. 1980;25:33–41.

    Article  Google Scholar 

  19. Johnson CP, Sarna SK, Zhu YR, Buchmann E, Bonham L, Telford GL, Roza AM, Adams MB. Delayed gastroduodenal emptying is an important mechanism for control of intestinal transit in short gut syndrome. Am J Surg. 1996;171:90–5.

    Article  CAS  PubMed  Google Scholar 

  20. Nightingale JM, Kamm MA, van der Sijp JR, Ghatei MA, Bloom SR, Lennard-Jones JE. Gastrointestinal hormones in short bowel syndrome. Peptide YY may be the ‘colonic brake’ to gastric emptying. Gut. 1996;39:267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Purdum PP, Kirby DF. Short bowel syndrome: a review of the role of nutrition support. JPEN J Parenter Enteral Nutr. 1991;15:93–101.

    Article  PubMed  Google Scholar 

  22. Hyman PE, Everett SL, Harada T. Gastric acid hypersecretion in short bowel syndrome in infants: association with extent of resection and enteral feeding. J Pediatr Gastroenterol Nutr. 1986;5:191–7.

    Article  CAS  PubMed  Google Scholar 

  23. Wright JK. Short gut syndrome- options for management. Compr Ther. 1992;18:5–8.

    PubMed  Google Scholar 

  24. Stringer MD, Puntis JWL. Short bowel syndrome. Arch Dis Child. 1995;73:170–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dudrick SJ, Latifi R. Management of short-bowel syndrome. In: Kirby DF, Dudrick SJ, editors. Practical handbook of nutrition in clinical practice. Boca Raton: CRC Press; 1994.

    Google Scholar 

  26. O’Brien DP, Nelson LA, Huang FS, Warner BW. Intestinal adaptation: structure, function, and regulation. Semin Pediatr Surg. 2001;10:56–64.

    Article  PubMed  Google Scholar 

  27. Pilling GP, Cresson SL. Massive resection of small intestine in the neonatal period. Report of two successful cases and review of the literature. Pediatrics. 1957;19:940–8.

    CAS  PubMed  Google Scholar 

  28. Wilmore DW. Factors correlating with a successful outcome following extensive intestinal resection in the newborn infant. J Pediatr. 1972;80:88–93.

    Article  CAS  PubMed  Google Scholar 

  29. Lentze MJ. Intestinal adaptation in short-bowel syndrome. Eur J Pediatr. 1989;148:294–9.

    Article  CAS  PubMed  Google Scholar 

  30. Williamson RC. Intestinal adaptation (first of two parts). Structural, functional and cytokinetic changes. N Engl J Med. 1978;298:1393–402.

    Article  CAS  PubMed  Google Scholar 

  31. Hanson WR, Osborne JW, Sharp JG. Compensation by the residual intestine after intestinal resection in the rat. II. Influence of postoperative time interval. Gastroenterology. 1977;72:701–5.

    CAS  PubMed  Google Scholar 

  32. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fan XQ, Guo YJ. Apoptosis in oncology. Cell Res. 2001;11:1–7.

    Article  CAS  PubMed  Google Scholar 

  34. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995;376:37–43.

    Article  CAS  PubMed  Google Scholar 

  35. Boise LH, Gottschalk AR, Quintans J, Thompson CB. Bcl-2 and Bcl-2-related proteins in apoptosis regulation. Curr Top Microbiol Immunol. 1995;200:107–21.

    CAS  PubMed  Google Scholar 

  36. Que FG, Gores GJ. Cell death by apoptosis: basic concepts and disease relevance for the gastroenterologist. Gastroenterology. 1996;110:1238–43.

    Article  CAS  PubMed  Google Scholar 

  37. Jarboe MD, Juno RJ, Bernal NP, Knott AW, Zhang Y, Erwin CR, Warner BW. Bax deficiency rescues resection-induced enterocyte apoptosis in mice with perturbed EGF receptor function. Surgery. 2004;136:121–6.

    Article  PubMed  Google Scholar 

  38. Williamson RC. Intestinal adaptation (second of two parts). Mechanisms of control. N Engl J Med. 1978;298:1444–50.

    Article  CAS  PubMed  Google Scholar 

  39. Hanson WR, Osborne JW, Sharp JG. Compensation by the residual intestine after intestinal resection in the rat -influence of amount of tissue removed. Gastroenterology. 1977;72:692–700.

    CAS  PubMed  Google Scholar 

  40. Tavakkolizadeh A, Whang EE. Understanding and augmenting human intestinal adaptation: a call for more clinical research. JPEN J Parenter Enteral Nutr. 2002;26:251–5.

    Article  PubMed  Google Scholar 

  41. Park JHY, Grandjean CJ, Hart MH, Vanderhoof JA. Effects of dietary linoleic acid on mucosal adaptation after small bowel resection. Digestion. 1989;44:57–65.

    Article  CAS  PubMed  Google Scholar 

  42. Sukhotnik I, Mor-Vaknin N, Drongowski RA, Miselevich I, Coran AG, Harmon CM. Effect of dietary fat on early morphological intestinal adaptation in a rat with short bowel syndrome. Pediatr Surg Int. 2004;20:419–24.

    PubMed  Google Scholar 

  43. Menge H, Grafe M, Lorenz-Meyer H, Riecken EO. The influence of food intake on the development of structural and functional adaptation following ileal resection in the rat. Gut. 1975;16:468–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sukhotnik I, Mor-Vaknin N, Drongowski RA, Coran AG, Harmon CM. Effect of dietary fat on fat absorption and concomitant plasma and tissue fat composition in a rat model of short bowel syndrome. Pediatr Surg Int. 2004;20:185–91.

    Article  CAS  PubMed  Google Scholar 

  45. Sukhotnik I, Shiloni E, Krausz MM, Yakirevich E, Sabo E, Mogilner J, Coran AG, Harmon CM. Low-fat diet impairs postresection intestinal adaptation in a rat model of short bowel syndrome. J Pediatr Surg. 2003;38:1182–7.

    Article  PubMed  Google Scholar 

  46. Sukhotnik I, Gork AS, Chen M, Drongowski RA, Coran AG, Harmon CM. Effect of low fat diet on lipid absorption and fatty-acid transport following bowel resection. Pediatr Surg Int. 2001;17:259–64.

    Article  CAS  PubMed  Google Scholar 

  47. Welters CF, Dejong CH, Deutz NE. Intestinal function and metabolism in the early adaptive phase after massive small bowel resection in the rat. J Pediatr Surg. 2001;36:1746–51.

    Article  CAS  PubMed  Google Scholar 

  48. Klimberg VS, Souba WW, Salloum RM, et al. Intestinal glutamine metabolism after massive small bowel resection. Am J Surg. 1990;159:27–32.

    Article  CAS  PubMed  Google Scholar 

  49. Deutz NE, Dejong CH, Athanasas G. Partial enterectomy in the rat does not diminish muscle glutamine production. Metabolism. 1992;41:1343–50.

    Article  CAS  PubMed  Google Scholar 

  50. Alavi K, KatoY YD. Enteral glutamine does not enhance the effects of hepatocyte growth factor in short bowel syndrome. J Pediatr Surg. 1998;33:1666–9.

    Article  CAS  PubMed  Google Scholar 

  51. Czernichow B, Nsi-Emvo E, Galluser M. Enteral supplementation with ornithine alpha-ketoglutarate improves the early adaptive response to resection. Gut. 1997;40:67–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sukhotnik I, Lerner A, Sabo E, Krausz MM, Siplovich L, Coran AG, Mogilner J, Shiloni E. Effects of enteral arginine supplementation on the structural intestinal adaptation in a rat model of short bowel syndrome. Dig Dis Sci. 2003;48:1346–51.

    Article  CAS  PubMed  Google Scholar 

  53. Swartz-Basile DA, Wang L, Tang Y, Pitt HA, Rubin DC, Levin MS. Vitamin A deficiency inhibits intestinal adaptation by modulating apoptosis, proliferation, and enterocyte migration. Am J Physiol Gastrointest Liver Physiol. 2003;285:G424–32.

    Article  CAS  PubMed  Google Scholar 

  54. Shulman DI, Hu CS, Duckett G, Lavallee-Grey M. Effects of short-term growth hormone therapy in rats undergoing 75% small intestinal resection. J Pediatr Gastroenterol Nutr. 1992;14:3–11.

    Article  CAS  PubMed  Google Scholar 

  55. Mainoya JR. Influence of bovine growth hormone on water and NaCl absorption by the rat proximal jejunum and distal ileum. Comp Biochem Physiol. 1982;71:477–9.

    Article  CAS  Google Scholar 

  56. Avissar NE, Ziegler TR, Toia L, Gu L, Ray EC, Berlanga-Acosta J, Sax HC. ATB0/ASCT2 expression in residual rabbit bowel is decreased after massive enterectomy and is restored by growth hormone treatment. J Nutr. 2004;134:2173–7.

    CAS  PubMed  Google Scholar 

  57. Waitzberg DL, Cukier C, Mucerino DR. Small bowel adaptation with growth hormone and glutamine after massive resection of rat’s small bowel. Nutr Hosp. 1999;14:81–90.

    CAS  PubMed  Google Scholar 

  58. Fadrique B, Lopez JM, Bermudez R. Growth hormone plus high protein diet promotes adaptation after massive small bowel resection in aged rats. Exp Gerontol. 2001;36:1727–37.

    Article  CAS  PubMed  Google Scholar 

  59. Wilmore DW, Lacey JM, Soultanakis RP, Bosch RL, Byrne TA. Factors predicting a successful outcome after pharmacologic bowel compensation. Ann Surg. 1997;226:288–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matarese LE, Seidner DL, Steiger E. Growth hormone, glutamine, and modified diet for intestinal adaptation. J Am Diet Assoc. 2004;104:1265–72.

    Article  CAS  PubMed  Google Scholar 

  61. Drucker DJ. Gut adaptation and the glucagon-like peptides. Gut. 2002;50:428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Litvak DA, Hellmich MR, Evers BM, Banker NA, Townsend Jr CM. Glucagon-like peptide 2 is a potent growth factor for small intestine and colon. J Gastrointest Surg. 1998;2:146–50.

    Article  CAS  PubMed  Google Scholar 

  63. Martin GR, Wallace LE, Hartmann B, Holst JJ, Demchyshyn L, Toney K, Sigalet DL. Nutrient stimulated GLP-2 release and crypt cell proliferation in experimental short bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2005;288:G431–8.

    Article  CAS  PubMed  Google Scholar 

  64. Uluutku AH, Akin ML, Kurt Y, Yucel E, Cermik H, Avsar K, Celenk T. Bombesin in short bowel syndrome. J Invest Surg. 2004;17:135–41.

    Article  PubMed  Google Scholar 

  65. Sukhotnik I, Slijper N, Karry R, Shaoul R, Coran AG, Lurie M, Shiloni E, Mogilner JG. Bombesin stimulates enterocyte turnover following massive small bowel resection in a rat. Pediatr Surg Int. 2007;23:397–404.

    Article  PubMed  Google Scholar 

  66. Bell-Anderson KS, Bryson JM. Leptin as a potential treatment for obesity: progress to date. Treat Endocrinol. 2004;3:11–8.

    Article  CAS  PubMed  Google Scholar 

  67. Paracchini V, Pedotti P, Taioli E. Genetics of leptin and obesity: a HuGE review. Am J Epidemiol. 2005;162:101–14.

    Article  PubMed  Google Scholar 

  68. Chaudhary M, Mandir N, FitzGerald AJ, Howard JK, Lord GM, Ghatei MA, Bloom SR, Goodlad RA. Starvation, leptin and epithelial cell proliferation in the gastrointestinal tract of the mouse. Digestion. 2000;61:223–9.

    Article  CAS  PubMed  Google Scholar 

  69. Sukhotnik I, Vadasz Z, Coran AG, Lurie M, Shiloni E, Hatoum OA, Mogilner JG. Effect of leptin on intestinal re-growth following massive small bowel resection in rat. Pediatr Surg Int. 2006;22:9–15.

    Article  PubMed  Google Scholar 

  70. Sukhotnik I, Khateeb K, Krausz MM, Sabo E, Siplovich L, Coran AG, Shiloni E. Sandostatin impairs postresection intestinal adaptation in a rat model of short bowel syndrome. Dig Dis Sci. 2002;47:2095–102.

    Article  CAS  PubMed  Google Scholar 

  71. Sukhotnik I, Shiloni E, Mogilner J, Lurie M, Hirsh M, Coran AG, Krausz MM. Effect of sex and sex hormones on structural intestinal adaptation after massive small bowel resection in rats. J Pediatr Surg. 2005;40:489–95.

    Article  PubMed  Google Scholar 

  72. Podolsky DK. Peptide growth factors in the gastrointestinal tract. In: Johnson LR, editor. Physiology of the gastrointestinal tract. 3rd ed. New York: Raven; 1994. p. 129–67.

    Google Scholar 

  73. Chaet MS, Arya G, Ziegler MM, Warner BW. Epidermal growth factor enhance intestinal adaptation after massive small bowel resection. J Pediatr Surg. 1994;29:1035–8.

    Article  CAS  PubMed  Google Scholar 

  74. Dunn JCY, Parungo CP, Fonkalsrud EW, McFadden DW, Ashley SW. Epidermal growth factor selectively enhances functional enterocyte adaptation after massive small bowel resection. J Surg Res. 1997;67:90–3.

    Article  CAS  PubMed  Google Scholar 

  75. Torado GJ, De Larco JE. Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cell. Nature. 1976;264:26–31.

    Article  Google Scholar 

  76. Falcone RA, Shin CE, Erwin CR, Warner BW. Intestinal adaptation occurs independent of transforming growth factor-alpha. J Pediatr Surg. 2000;2:365–70.

    Article  Google Scholar 

  77. Wiren M, Adrian TE, Arnelo U, Permert J, Staab P, Larsson J. An increase in mucosal insulin-like growth factor II content in postresection rat intestine suggests autocrine or paracrine growth stimulation. Scand J Gastroenterol. 1998;33:1080–6.

    Article  CAS  PubMed  Google Scholar 

  78. Ziegler TR, Mantell MP, Chow JC, Rombeau JL, Smith RJ. Gut adaptation and the insulin-like growth factor system: regulation by glutamine and IGF-1 administration. Am J Physiol. 1996;271:G866–75.

    CAS  PubMed  Google Scholar 

  79. Sukhotnik I, Shehadeh N, Shamir R, Bejar J, Bernshteyn A, Mogilner JG. Oral insulin enhances intestinal re-growth following massive small bowel resection in rat. Dig Dis Sci. 2005;50:2379–85.

    Article  PubMed  Google Scholar 

  80. Ben Lulu S, Coran AG, Mogilner JG, Shamir R, Shehadeh N, Sukhotnik I. Oral insulin stimulates intestinal epithelial cell turnover in correlation with insulin-receptor expression along the villus-crypt axis in a rat model of short bowel syndrome. Pediatr Surg Int. 2010;26:37–44.

    Article  PubMed  Google Scholar 

  81. Shamir R, Kolacek S, Koletzko S, Tavori I, Bader D, Litmanovitz I, Flidel-Rimon O, Marks KA, Sukhotnik I, Shehadeh N. Oral insulin supplementation in pediatric short bowel disease. A pilot observational study. J Pediatr Gastroenterol Nutr JPGN. 2009;49:108–11.

    Article  CAS  PubMed  Google Scholar 

  82. Wildhaber BE, Yang H, Teitelbaum DH. Keratinocyte growth factor decreases total parenteral nutrition-induced apoptosis in mouse intestinal epithelium via Bcl-2. J Pediatr Surg. 2003;38:92–6.

    Article  PubMed  Google Scholar 

  83. Kermorgant S, Walker F, Hormi K, Dessirier V, Lewin MJ, Lehy T. Developmental expression and functionality of hepatocyte growth factor and c-Met in human fetal digestive tissues. Gastroenterology. 1997;112:1635–47.

    Article  CAS  PubMed  Google Scholar 

  84. Fukamachi H, Ichinose M, Tsukada S, Kakei N, Suzuki T, Miki K, Kurokawa K, Masui T. Hepatocyte growth factor region specifically stimulates gastro-intestinal epithelial growth in primary culture. Biochem Biophys Res Commun. 1994;205:1445–51.

    Article  CAS  PubMed  Google Scholar 

  85. Nishimura S, Takahashi M, Ota S, Hirano M, Hiraishi H. Hepatocyte growth factor accelerates restitution of intestinal epithelial cells. J Gastroenterol. 1998;33:172–8.

    Article  CAS  PubMed  Google Scholar 

  86. Kato Y, Yu D, Lukish JR, Schwartz MZ. Hepatocyte growth factor enhances intestinal mucosal cell function and mass in vivo. J Pediatr Surg. 1997;32:991–4.

    Article  CAS  PubMed  Google Scholar 

  87. Berger DL, Malt RA. Management of the short gut syndrome. Adv Surg. 1996;29:43–57.

    CAS  PubMed  Google Scholar 

  88. Ziegler MM. Short bowel syndrome: remedial features that influence outcome and the duration of parenteral nutrition. J Pediatr. 1997;131:335–6.

    Article  CAS  PubMed  Google Scholar 

  89. Scolapio JS. Effect of growth hormone and glutamine on the short bowel: five years later [review]. Gut. 2000;47:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stollman NH, Neustater BR, Rogers AI. Short bowel syndrome. Gastroenterologist. 1996;4:118–28.

    CAS  PubMed  Google Scholar 

  91. Wilmore DW. Growth factors and nutrients in the short bowel syndrome. JPEN J Parent Enteral Nutr. 1999;23(5 Suppl):S117–20.

    Article  CAS  Google Scholar 

  92. Yang H, Teitelbaum DH. Novel agents in the treatment of intestinal failure: humoral factors. Gastroenterology. 2006;130(2 Suppl 1):S117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sigalet DL, Martin GR, Butzner JD, Buret A, Meddings JB. A pilot study of the use of epidermal growth factor in pediatric short bowel syndrome. J Pediatr Surg. 2005;40:763–8.

    Article  PubMed  Google Scholar 

  94. Jeppesen PB, Hartmann B, Thulesen J, Graff J, Lohmann J, Hansen BS, Tofteng F, Poulsen SS, Madsen JL, Holst JJ, Mortensen PB. Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology. 2001;120:806–15.

    Article  CAS  PubMed  Google Scholar 

  95. Yazbeck R. Teduglutide, a glucagon-like peptide-2 analog for the treatment of gastrointestinal diseases, including short bowel syndrome. Curr Opin Mol Ther. 2010;12:798–809.

    CAS  PubMed  Google Scholar 

  96. Potten CS, Kovacs L, Hamilton E. Continuous labelling studies on mouse skin and intestine. Cell Tissue Kinet. 1974;7:271–83.

    CAS  PubMed  Google Scholar 

  97. Potten CS. Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature. 1977;269:518–21.

    Article  CAS  PubMed  Google Scholar 

  98. Bjerknes M, Cheng H. The stem-cell zone of the small intestinal epithelium: III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am J Anat. 1981;160:77–91.

    Article  CAS  PubMed  Google Scholar 

  99. Nakamura M, Okano H, Blendy JA, Montell C. Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron. 1994;13:67–81.

    Article  CAS  PubMed  Google Scholar 

  100. Lindvall C, Zylstra CR, Evans N, West RA, Dykema K, Furge K, Williams BO. The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development. PLoS One. 2009;4:e5813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Grikscheit TC, Siddique A, Ochoa ER, Srinivasan A, Alsberg E, Hodin RA, Vacanti JP. Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg. 2004;240:748–54.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sukhotnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sukhotnik, I. (2016). Short Bowel Syndrome: Intestinal Adaptation. In: Rintala, R., Pakarinen, M., Wester, T. (eds) Current Concepts of Intestinal Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-42551-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42551-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42549-8

  • Online ISBN: 978-3-319-42551-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics