Skip to main content

The Effect of Cancer and Its Treatment on Natural-Born Offspring

  • Chapter
  • First Online:
The Complete Guide to Male Fertility Preservation

Abstract

The literature describing the impact of cancer and its treatment on spermatogenesis, likelihood of natural conception, and discussion of potential congenital abnormalities as a result of DNA damage in sperm is discussed in this chapter.

Many patients diagnosed with cancer are of reproductive age. As advancements in medicine lead to improvements in cancer diagnosis and treatment, more of these younger patients survive. Given increasing 5-year survival rates, it is becoming increasingly important to consider future fertility in patients undergoing cancer treatment. Therefore all males of pubertal age and older should have a discussion with their physician regarding fertility preservation prior to receiving treatment for cancer.

Men with cancer before receiving treatment are more frequently observed to have abnormal semen parameters due to anatomic and physiologic disruptions. This has been observed for many different types of malignancies, but it is magnified in the testicular cancer population.

Among the different modalities for cancer treatment, chemotherapy and radiation have been shown to cause direct damage to spermatogonia and therefore affect spermatogenesis. Surgery affects fertility by alterations in anatomy. After treatment with chemotherapy, abnormal sperm DNA fragmentation and aneuploidy rates have been observed.

With regard to congenital abnormalities of offspring as a result of cancer treatment, data suggest that children born to fathers within the first 2 years of cancer diagnosis and those men diagnosed with cancer in childhood have a statistically significant, but likely clinically insignificant, increase in congenital abnormalities. When compared with natural conception, assisted reproductive technology was associated with increased risk for low birth weight and preterm delivery, and a 20% increased risk of major congenital abnormality regardless of paternal cancer history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  2. Howlader N, et al. SEER cancer statistics review 1975–2009. Bethesda, MD: National Cancer Institute; 2012.

    Google Scholar 

  3. Loren A, et al. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2013;31:2500–10.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schover LR, Rybicki LA, Martin BA, Bringelsen KA. Having children after cancer: a pilot survey of survivors’ attitudes and experiences. Cancer. 1999;86(4):697–709.

    Article  CAS  PubMed  Google Scholar 

  5. Kohler TS, Kondapalli LA, Shah A, et al. Results from the survey of preservation of adolescent reproduction (SPARE) study: gender disparity in deliver of fertility preservation message in adolescents with cancer. J Assist Reprod Genet. 2011;28(3):269–77.

    Article  PubMed  Google Scholar 

  6. Salonia A, Capogrosso P, Castiglione F, et al. Sperm banking is of key importance in patients with prostate cancer. Fertil Steril. 2013;100:367–372.e1.

    Article  PubMed  Google Scholar 

  7. Setchell BP, Brooks DE. Anatomy, vasculature, innervation and fluids of the male reproductive tract. New York: Raven Press; 1988.

    Google Scholar 

  8. Muller J, Skakkebaek NE. Quantification of germ cells and seminiferous tubules by stereological examination of testicles from 50 boys who suffered from sudden death. Int J Androl. 1983;6:143–56.

    Article  CAS  PubMed  Google Scholar 

  9. Clermont Y. The cycle of the seminiferous epithelium in man. Am J Anat. 1963;112:35–51.

    Article  CAS  PubMed  Google Scholar 

  10. Clermont Y. Spermatogenesis in man. A study of the spermatogonial population. Fertil Steril. 1966;17:705–21.

    Article  CAS  PubMed  Google Scholar 

  11. Clermont Y. Renewal of spermatogonia in man. Am J Anat. 1966;118:509–24.

    Article  CAS  PubMed  Google Scholar 

  12. Clermont Y. Two classes of spermatogonial stem cells in the monkey (Cercopithecus aethiops). Am J Anat. 1969;126:57–71.

    Article  CAS  PubMed  Google Scholar 

  13. Simorangkir DR, Marshall GR, Ehmcke J, Schlatt S, Plant TM. Prepubertal expansion of dark and pale type A spermatogonia in the rhesus monkey (Macaca mulatta) results from proliferation during infantile and juvenile development in a relatively gonadotropin independent manner. Biol Reprod. 2005;73:1109–15.

    Article  CAS  PubMed  Google Scholar 

  14. van Alphen MM, van de Kant HJ, de Rooij DG. Repopulation of the seminiferous epithelium of the rhesus monkey after X irradiation. Radiat Res. 1988;113:487–500.

    Article  PubMed  Google Scholar 

  15. Ehmcke J, Simorangkir DR, Schlatt S. Identification of the starting point for spermatogenesis and characterization of the testicular stem cell in adult male rhesus monkeys. Hum Reprod. 2005;20:1185–93.

    Article  PubMed  Google Scholar 

  16. Kanatsu-Shinohara M, Toyokuni S, Morimoto T, Matsui S, Honjo T, Shinohara T. Functional assessment of self-renewal activity of male germline stem cells following cytotoxic damage and serial transplantation. Biol Reprod. 2003;68:1801–7.

    Article  CAS  PubMed  Google Scholar 

  17. Rowley MJ, Leach DR, Warner GA, Heller CG. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59:665–78.

    Article  CAS  PubMed  Google Scholar 

  18. Shalet SM, Tsatsoulis A, Whitehead E, Read G. Vulnerability of the human Leydig cell to radiation damage is dependent upon age. J Endocrinol. 1989;120:161–5.

    Article  CAS  PubMed  Google Scholar 

  19. Ridola V, Fawaz O, Aubier F, et al. Testicular function of survivors of childhood cancer: a comparative study between ifosfamide- and cyclophosphamide-based regimens. Eur J Cancer. 2009;45:814–8.

    Article  CAS  PubMed  Google Scholar 

  20. Williams DH, Karpman E, Sander JC, Spiess PE, Pisters LL, Lipshultz LI. Pre-treatment semen parameters in men with cancer. J Urol. 2009;181:736–40.

    Article  PubMed  Google Scholar 

  21. Hendry WF, Stedronksa J, Jones CR, Blackmore CA, Barrett A, Peckham MJ. Semen analysis in testicular cancer and Hodgkin’s disease: pre- and post-treatment findings and implications for cryopreservation. Br J Urol. 1983;55:769–73.

    Article  CAS  PubMed  Google Scholar 

  22. Dada R, Gupta NP, Kucheria K. Spermatogenic arrest in men with testicular hyperthermia. Teratog Carcinog Mutagen. 2003;(suppl 1):235–43.

    Google Scholar 

  23. van der Kaaij MA, Heutte N, van Echten-Arends J, et al. Sperm quality before treatment in patients with early stage Hodgkin’s lymphoma enrolled in EORTC-GELA Lymphoma Group trials. Haematologica. 2009;94:1691–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Barr RD, Clark DA, Booth JD. Dyspermia in men with localised Hodgkin’s disease. A potentially reversible immune-mediated disorder. Med Hypotheses. 1993;40:165–8.

    Article  CAS  PubMed  Google Scholar 

  25. Ståhl O, Eberhard J, Cavallin-Ståhl E, Jepson K, Friberg B, Tingsmark C, Spanò M, Giwercman A. Sperm DNA integrity in cancer patients: the effect of disease and treatment. Int J Androl. 2008;32(6):695–703.

    Article  PubMed  Google Scholar 

  26. Spermon JR, Ramos L, Wetzels AMM, Sweep CGJ, Braat DDM, Kiemeney LALM, Witjes JA. Sperm integrity pre- and post-chemotherapy in men with testicular germ cell cancer. Hum Reprod. 2006;21(7):1781–6.

    Article  CAS  PubMed  Google Scholar 

  27. Tournaye H, Dohle GR, Barratt CL. Fertility preservation in men with cancer. Lancet. 2014;384:1295–301.

    Article  PubMed  Google Scholar 

  28. Hsiao W, Stahl PJ, Osterberg EC, et al. Successful treatment of postchemotherapy azoospermia with microsurgical testicular sperm extraction: the Weill Cornell experience. J Clin Oncol. 2011;29:1607–11.

    Article  PubMed  Google Scholar 

  29. Kort JD, Eisenberg ML, Millheiser LS, Westphal LM. Fertility issues in cancer survivorship. CA Cancer J Clin. 2014;64:118–34.

    Article  PubMed  Google Scholar 

  30. van Casteren NJ, van der Linden GH, Hakvoort-Cammel FG, Hählen K, Dohle GR, van den Heuvel-Eibrink MM. Effect of childhood cancer treatment on fertility markers in adult male long-term survivors. Pediatr Blood Cancer. 2009;52:108–12.

    Article  PubMed  Google Scholar 

  31. Meistrich ML, Wilson G, Brown BW, da Cunha MF, Lipshultz LI. Impact of cyclophosphamide on long-term reduction in sperm count in men treated with combination chemotherapy for Ewing and soft tissue sarcomas. Cancer. 1992;70:2703–12.

    Article  CAS  PubMed  Google Scholar 

  32. Marmor D, Duyck F. Male reproductive potential after MOPP therapy for Hodgkin’s disease: a long-term survey. Andrologia. 1995;27:99–106.

    Article  CAS  PubMed  Google Scholar 

  33. Tal R, Botchan A, Hauser R, Yogev L, Paz G, Yavetz H. Follow-up of sperm concentration and motility in patients with lymphoma. Hum Reprod. 2000;15:1985–8.

    Article  CAS  PubMed  Google Scholar 

  34. Behringer K, Mueller H, Goergen H, et al. Gonadal function and fertility in survivors after Hodgkin lymphoma treatment within the German Hodgkin Study Group HD13 to HD15 trials. J Clin Oncol. 2013;31:231–9.

    Article  CAS  PubMed  Google Scholar 

  35. Romerius P, Ståhl O, Moëll C, et al. High risk of azoospermia in men treated for childhood cancer. Int J Androl. 2011;34:69–76.

    Article  CAS  PubMed  Google Scholar 

  36. Anserini P, Chiodi S, Spinelli S, et al. Semen analysis following allogeneic bone marrow transplantation. Additional data for evidence-based counselling. Bone Marrow Transplant. 2002;30:447–51.

    Article  CAS  PubMed  Google Scholar 

  37. Howell SJ, Shalet SM. Spermatogenesis after cancer treatment: damage and recovery. J Natl Cancer Inst Monogr. 2005;34:12–7.

    Article  CAS  Google Scholar 

  38. Trottmann M, Becker AJ, Stadler T, et al. Semen quality in men with malignant diseases before and after therapy and the role of cryopreservation. Eur Urol. 2007;52:355–67.

    Article  PubMed  Google Scholar 

  39. Petersen PM, Giwercman A, Daugaard G, Rørth M, Petersen JH, Skakkeaek NE, Hansen SW, von der Maase H. Effect of graded testicular doses of radiotherapy in patients treated for carcinoma-in-situ in the testis. J Clin Oncol. 2002;20(6):1537–43.

    Article  PubMed  Google Scholar 

  40. Thomas C, Cans C, Pelletier R, De Robertis C, Hazzouri M, Sele B, Rousseaux S, Hennebicq S. No long-term increase in sperm aneuploidy rates after anticancer therapy: sperm fluorescence in situ hybridization analysis in 26 patients treated for testicular cancer or lymphoma. Clin Cancer Res. 2004;10(19):6535–43.

    Article  CAS  PubMed  Google Scholar 

  41. Tempest HG, Ko E, Chan P, Robaire B, Rademaker A, Martin RH. Sperm aneuploidy frequencies analysed before and after chemotherapy in testicular cancer and Hodgkin’s lymphoma patients. Hum Reprod. 2008;23(2):251–8.

    Article  CAS  PubMed  Google Scholar 

  42. O’Donovan M. An evaluation of chromatin condensation and DNA integrity in the spermatozoa of men with cancer before and after therapy. Andrologia. 2005;37:83–90.

    Article  PubMed  Google Scholar 

  43. Marchetti F, Wyrobek AJ. Mechanisms and consequences of paternally-transmitted chromosomal abnormalities. Birth Defects Res C Embryo Today. 2005;75(2):112–29.

    Article  CAS  PubMed  Google Scholar 

  44. Ståhl O, Boyd HA, Giwercman A, Lindholm M, Jensen A, Kjær SK, Anderson H, Cavallin-Ståhl E, Rylander L. Risk of birth abnormalities in the offspring of men with a history of cancer: a cohort study using Danish and Swedish national registries. J Natl Cancer Inst. 2011;103(5):398–406.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry I. Lipshultz MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McDowell, Z.J., Hockenberry, M.S., Lipshultz, L.I. (2018). The Effect of Cancer and Its Treatment on Natural-Born Offspring. In: Majzoub, A., Agarwal, A. (eds) The Complete Guide to Male Fertility Preservation. Springer, Cham. https://doi.org/10.1007/978-3-319-42396-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42396-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42395-1

  • Online ISBN: 978-3-319-42396-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics