Skip to main content

Hybrid Photonic Integration: Components and Technologies

  • Chapter
  • First Online:
Fibre Optic Communication

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 161))

  • 3870 Accesses

Abstract

This chapter introduces the background and the significance of the technology developed for the hybrid photonic integration. Two platforms are chosen as representative examples, i.e., the polymer motherboard integration platform (Polyboard) and the silicon nitride/silicon dioxide (TriPleX™) PLC platform. On these platforms, both the individual components and the hybrid integration technology have witnessed fast advancement in the last decade, complementing the well-established InP-monolithic platform and the silicon-on-insulator (SOI) platform by providing pragmatic, flexible and cost-effective solutions to various challenges in the photonic applications. Starting from the basic waveguides and related passive elements, the chapter goes on to discover the unique coupling/bonding methods with fibers, light sources and photo detectors. In the end, optical assemblies and modules are demonstrated in application areas covering Telecom, Datacom, microwave photonics and bio-medical sensing, wherein the technology for the hybrid photonic integration technology is well proven and validated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Ma, A.K.Y. Jen, L.R. Dalton, Polymer-based optical waveguides: materials, processing, and devices. Adv. Mater. 14, 1339–1365 (2002)

    Google Scholar 

  2. G. Coppola, L. Sirleto, I. Rendina, M. Iodice, Advance in thermo-optical switches: principles, materials, design, and device structure. Opt. Eng. 50(7), 071112 (2011)

    ADS  Google Scholar 

  3. Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, N. Keil, Polymer-based photonic toolbox: passive components, hybrid integration and polarization control. IET Optoelectron. 5(5), 226–232 (2011)

    Google Scholar 

  4. Z. Zhang, D. Liu, D. Felipe, A. Liu, N. Keil, N. Grote, Polymer embedded silicon nitride thermally tunable Bragg grating filters. Appl. Phys. Lett. 102(18), 181105 (2013)

    ADS  Google Scholar 

  5. A. Liu, Z. Zhang, D. Felipe, N. Keil, N. Grote, Power-efficient thermo-optic tunable filters based on polymeric waveguide Bragg gratings. IEEE Photonics Technol. Lett. 26(3), 313–315 (2014)

    ADS  Google Scholar 

  6. D. Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. Maese-Novo, C. Zawadzki, M. Moehrle, N. Keil, Polymer-based external cavity lasers: tuning efficiency, reliability and polarization diversity. IEEE Photonics Technol. Lett. 26(14), 1391–1394 (2014)

    ADS  Google Scholar 

  7. P. Kersten, G. Schreiber, Stray light suppression structures using a waveguide and angled, deep etched trenches filled with an absorbing material. WO Patent 2004023179, March 18 (2004)

    Google Scholar 

  8. Z. Zhang, D. de Felipe, W. Brinker, M. Kleinert, A. Maese-Novo, M. Moehrle, C. Zawadzki, N. Keil, C/L-band colorless ONU based on polymer bi-directional optical subassembly. J. Lightwave Technol. 33, 1230–1234 (2015)

    ADS  Google Scholar 

  9. Z. Zhang, M. Kleinert, A. Maese-Novo, G. Irmscher, E. Schwartz, C. Zawadzki, N. Keil, Multicore polymer waveguides and multi-step 45° mirrors for 3D photonic integration. IEEE Photonics Technol. Lett. 26(19), 1986–1989 (2014)

    ADS  Google Scholar 

  10. D. Liu, Z. Zhang, N. Keil, N. Grote, Thermally tunable silicon nitride sampled gratings in polymer. IEEE Photonics Technol. Lett. 25(17), 1734–1736 (2013)

    ADS  Google Scholar 

  11. Z. Zhang, A. Novo, D. Liu, N. Keil, N. Grote, Compact and tunable silicon nitride Bragg grating filters in polymer. Opt. Commun. 321, 23–27 (2014)

    ADS  Google Scholar 

  12. Z. Zhang, G. Genrich, N. Keil, N. Grote, Widely tunable grating-assisted heterogeneous silicon nitride/polymer waveguide coupler. Opt. Lett. 39(1), 162–165 (2014)

    ADS  Google Scholar 

  13. K. Wörhoff, R.G. Heideman, A. Leinse, M. Hoekman, TriPleX: a versatile dielectric photonic platform. Adv. Opt. Technol. 4(2), 189–207 (2015)

    ADS  Google Scholar 

  14. R.G. Heideman, J.A. Walker, Surface waveguide technology for telecom and biochemical sensing, in Photonics West’06. Proc. SPIE, vol. 6125, San Jose, CA, USA (2006), paper 021

    Google Scholar 

  15. F. Morichetti, A. Melloni, M. Martinelli, R.G. Heideman, A. Leinse, D.H. Geuzebroek, A. Borreman, Box-shaped dielectric waveguides: a new concept in integrated optics? J. Lightwave Technol. 25(9), 2579–2589 (2007)

    ADS  Google Scholar 

  16. W. Hoving, D. Geuzebroek, R. Heideman, Designing a next-generation waveguide by geometry. SPIE Newsroom (2008). doi:10.1117/2.1200806.1166; http://www.spie.org/x25303.xml?pf=true&highlight=x2414

    Article  Google Scholar 

  17. R.G. Heideman, M. Hoekman, E. Schreuder, TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection. IEEE Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012)

    ADS  Google Scholar 

  18. R.G. Heideman, A. Melloni, M. Hoekman, A. Borreman, A. Leinse, F. Morichetti, Low loss, high contrast optical waveguides based on CMOS compatible LPCVD processing: technology and experimental results, in IEEE/LEOS Benelux Chapter 2005 Ann. Symp., Mons, Belgium Dec. 1–2, 2005, pp. 71–74

    Google Scholar 

  19. D.A.I. Marpaung, C.G.H. Roeloffzen, A. Leinse, M. Hoekman, A photonic chip based frequency discriminator for a high performance microwave photonic link. Opt. Express 18, 27359–27370 (2010)

    ADS  Google Scholar 

  20. G. Yurtsever, B. Považay, A. Alex, B. Zabihian, W. Drexler, R. Baets, Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography. Biomed. Opt. Express 5, 1050–1061 (2014)

    Google Scholar 

  21. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, C. Roeloffzen, Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing. Opt. Express 19, 23162–23170 (2011)

    ADS  Google Scholar 

  22. D.T. Spencer, M.J.R. Heck, R. Moreira, J. Bovington, J.E. Bowers, A. Leinse, H.H.v.d. Vlekkert, R.G. Heideman, M. Hoekman, T.T. Veenstra, Integrated single and multi-layer Si3N4 platform for ultra-low loss propagation and small bending radii, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), Techn. Digest, paper Th1A.2

    Google Scholar 

  23. J.F. Bauters, M.J.R. Heck, D.D. John, J.S. Barton, C.M. Bruinink, A. Leinse, R.G. Heideman, D.J. Blumenthal, J.E. Bowers, Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 19, 24090–24101 (2011)

    ADS  Google Scholar 

  24. J.P. Epping, M. Hoekman, R. Mateman, A. Leinse, R.G. Heideman, A. Rees, P. Slot, C.J. Lee, K.J. Boller, High confinement, high yield Si3N4 waveguides for nonlinear optical applications. Opt. Express 23, 642–648 (2015)

    ADS  Google Scholar 

  25. V. Almeida, R. Panepucci, M. Lipson, Nanotaper for compact mode conversion. Opt. Lett. 28, 1302–1304 (2002)

    ADS  Google Scholar 

  26. G. Roelkens, D. Van Thourhout, R. Baets, High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers. Opt. Lett. 32, 1495–1497 (2007)

    ADS  Google Scholar 

  27. N. Keil, Z. Zhang, C. Zawadzki, C. Wagner, A. Scheibe, H. Ehlers, D. Ristau, J. Wang, W. Brinker, N. Grote, Ultra low-loss \(1\times 2\) multiplexer using thin-film filters on polymer integration platform. Electron. Lett. 45(23), 1167–1168 (2009)

    ADS  Google Scholar 

  28. EU FP7 project PHASTFlex (http://www.phastflex.eu/)

  29. M. Möhrle, W. Brinker, C. Wagner, G. Przyrembel, A. Sigmund, W.D. Molzow, First complex coupled 1490 nm CSDFB lasers: high yield, low feedback sensitivity, and uncooled 10 Gb/s modulation, in Proc. 35th Europ. Conf. Opt. Commun. (ECOC’09), Vienna, Austria (2009), paper 8.1.2

    Google Scholar 

  30. Z. Zhang, D. Felipe, W. Brinker, M. Kleinert, A. Maese-Novo, C. Zawadzki, M. Moehrle, N. Keil, Bi-directional, crosstalk-suppressed, 40-nm wavelength tuneable colourless ONU on polymer platform, in Proc. 40th Europ. Conf. Opt. Commun. (ECOC’14), Cannes, France (2014), paper Mo. 4.4.4

    Google Scholar 

  31. H. Klein, C. Wagner, W. Brinker, F. Soares, D. de Felipe, Z. Zhang, C. Zawadzki, N. Keil, M. Möhrle, Hybrid InP-polymer 30 nm tunable DBR laser for 10 Gbit/s direct modulation in the C-band, in Internat. Conf. Indium Phosphide Relat. Mater. (IPRM’12), Santa Barbara, CA, USA (2012), pp. 20–21, Techn. Digest

    Google Scholar 

  32. D. Felipe, C. Zawadzki, Z. Zhang, W. Brinker, H. Klein, M. Möhrle, N. Keil, N. Grote, M. Schell, 40 nm tuneable source for colourless ONUs based on dual hybridly integrated polymer waveguide grating lasers, in Proc. 39th Europ. Conf. Opt. Commun. (ECOC’13), London, UK (2013), pp. 189–191

    Google Scholar 

  33. D. Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. Maese-Novo, C. Zawadzki, M. Moehrle, N. Keil, Polymer-based external cavity lasers: tuning efficiency, reliability and polarization diversity. IEEE Photonics Technol. Lett. 26(14), 1391–1394 (2014)

    ADS  Google Scholar 

  34. Z. Zhang, A. Maese-Novo, A. Polatynski, T. Mueller, G. Irmscher, D. de Felipe, M. Kleinert, W. Brinker, C. Zawadzki, N. Keil, Colorless, dual-polarization 90° hybrid with integrated VOAs and local oscillator on polymer platform, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, paper Th1F.3

    Google Scholar 

  35. M. Piels, J.F. Bauters, M.L. Davenport, M.J.R. Heck, J.E. Bowers, Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors. J. Lightwave Technol. 32, 817–823 (2014)

    ADS  Google Scholar 

  36. R.G. Heideman, M. Hoekman, Two-dimensional tapered coupler (nonlinear taper), U.S. Patent Application No.: 14/270,014

    Google Scholar 

  37. J. Yue, F.H. Falke, J.C. Schouten, T.A. Nijhuis, Microreactors with integrated UV/vis spectroscopic detection for online process analysis under segmented flow. Lab Chip 13, 4855–4863 (2013)

    Google Scholar 

  38. T. Mueller, A. Maese-Novo, Z. Zhang, A. Polatynski, D. de Felipe, M. Kleinert, W. Brinker, C. Zawadzki, N. Keil, Switchable dual-polarization external cavity tunable laser. Opt. Lett. 40, 447–450 (2015)

    ADS  Google Scholar 

  39. D. Felipe, C. Zawadzki, Z. Zhang, A. Maese-Novo, M. Wenzel, H. Li, G. Przyrembel, A. Sigmund, M. Möhrle, N. Keil, N. Grote, M. Schell, Hybrid InP/polymer optical line terminals for 40-channel 100-GHz spectrum-sliced WDM-PON, in Proc. 39th Europ. Conf. Opt. Commun. (ECOC’13), London, UK (2013), pp. 237–239

    Google Scholar 

  40. D. Dai, Z. Wang, J.F. Bauters, M. Tien, M. Heck, D.J. Blumenthal, J.E. Bowers, Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. Opt. Express 19, 14130–14136 (2011)

    ADS  Google Scholar 

  41. S.C. Nicholes, J.W. Raring, M. Dummer, A. Tauke-Pedretti, L.A. Coldren, High-confinement strained MQW for highly polarized high-power broadband light source. IEEE Photonics Technol. Lett. 19(10), 771–773 (2007)

    ADS  Google Scholar 

  42. J. Capmany, D. Novak, Microwave photonics combines two worlds. Nat. Photonics 1, 319–330 (2007)

    ADS  Google Scholar 

  43. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, Integrated microwave photonics. Laser Photonics Rev. 7, 506–538 (2013)

    ADS  Google Scholar 

  44. L. Zhuang, W.P. Beeker, A. Leinse, R.G. Heideman, C.G.H. Roeloffzen, Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure. Opt. Express 21, 3114–3124 (2013)

    ADS  Google Scholar 

  45. L. Zhuang, M.R. Khan, W.P. Beeker, A. Leinse, R.G. Heideman, C. Roeloffzen, Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter. Opt. Express 20, 26499–26510 (2012)

    ADS  Google Scholar 

  46. M. Burla, D.A.I. Marpaung, L. Zhuang, C.G.H. Roeloffzen, M.R. Khan, A. Leinse, M. Hoekman, R. Heideman, On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011)

    ADS  Google Scholar 

  47. D. Marpaung, L. Chevalier, M. Burla, C.G.H. Roeloffzen, Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator. Opt. Express 19, 24838–24848 (2011)

    ADS  Google Scholar 

  48. D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, B.J. Eggleton, Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection. Opt. Express 21, 23286–23294 (2013)

    ADS  Google Scholar 

  49. M. Burla, D. Marpaung, L. Zhuang, M. Khan, A. Leinse, W. Beeker, M. Hoekman, R.G. Heideman, C. Roeloffzen, Multiwavelength-integrated optical beamformer based on wavelength division multiplexing for 2-D phased array antennas. J. Lightwave Technol. 32, 3509–3520 (2014)

    ADS  Google Scholar 

  50. C. Roeloffzen, R. Oldenbeuving, R.B. Timens, P. van Dijk, C. Taddei, A. Leinse, M. Hoekman, R.G. Heideman, L. Zhuang, D. Marpaung, M. Burla, Integrated optical beamformers, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, paper Tu3F.4

    Google Scholar 

  51. C.G.H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R.G. Heideman, P. Dijk, R.M. Oldenbeuving, D. Marpaung, M. Burla, K.J. Boller, Silicon nitride microwave photonic circuits. Opt. Express 21, 22937–22961 (2013)

    ADS  Google Scholar 

  52. L. Zhuang, C.G.H. Roeloffzen, A. Meijerink, M. Burla, D.A.I. Marpaung, A. Leinse, M. Hoekman, R.G. Heideman, W. Etten, Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part II: Experimental prototype. J. Lightwave Technol. 28, 19–31 (2010)

    ADS  Google Scholar 

  53. L. Zhuang, M. Hoekman, C. Taddei, A. Leinse, R.G. Heideman, A. Hulzinga, J. Verpoorte, R.M. Oldenbeuving, P. Dijk, K.J. Boller, C. Roeloffzen, On-chip microwave photonic beamformer circuits operating with phase modulation and direct detection. Opt. Express 22, 17079–17091 (2014)

    ADS  Google Scholar 

  54. C. Taddei, L. Zhuang, M. Hoekman, A. Leinse, R. Oldenbeuving, P. Dijk, C. Roeloffzen, Fully reconfigurable coupled ring resonator-based bandpass filter for microwave signal processing, in Proc. Internat. Top. Meeting Microwave Photon./The 9th Asia-Pacific Microwave Photon. Conf. (MWP/APMP’14), Sapporo, Japan (2014), pp. 44–47, paper TuC-4. doi:10.1109/MWP.2014.6994485

    Chapter  Google Scholar 

  55. V.D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R.G. Heideman, T.G. van Leeuwen, J. Kalkman, Integrated-optics-based swept-source optical coherence tomography. Opt. Lett. 37, 4820–4822 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, Z., Leinse, A. (2017). Hybrid Photonic Integration: Components and Technologies. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-319-42367-8_13

Download citation

Publish with us

Policies and ethics