Skip to main content

Fiber Amplifiers

  • Chapter
  • First Online:
Fibre Optic Communication

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 161))

  • 3819 Accesses

Abstract

The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The signal length \(L_{\mathit{eff}}^{s}\) is defined through the relation \(P_{s}^{0}L_{\mathit{eff}}^{s} = \int_{0}^{L} P_{s}(z)dz\), where \(P_{s}^{0}\) is the signal power at \(z = 0\). In the absence of gain and assuming that the loss rate at the signal and pump wavelength are identical, the signal effective length equals the Raman effective length in (12.23).

References

  1. A.T. Pedersen, L. Grüner-Nielsen, K. Rottwitt, Measurement and modeling of low wavelength losses of silica fibers and their impact at communication wavelengths. J. Lightwave Technol. 27, 1296–1300 (2009)

    ADS  Google Scholar 

  2. P.C. Becker, N.A. Olson, J.R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamentals and Technology (Academic Press, San Diego, 1999)

    Google Scholar 

  3. E. Desurvire, Erbium Doped Fiber Amplifiers, Principles and Applications (Wiley, New York, 1994)

    Google Scholar 

  4. M.J.F. Digonet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd edn. (Marcel Dekker, New York, 1993)

    Google Scholar 

  5. C.R. Giles, E. Desurvire, Modeling erbium-doped fiber amplifiers. J. Lightwave Technol. 9, 271–283 (1991)

    ADS  Google Scholar 

  6. Y. Sun, J.L. Zyskind, A.K. Srivastava, Average inversion level, modeling, and physics of erbium-doped fiber amplifiers. IEEE J. Sel. Top. Quantum Electron. 3, 991–1007 (1997)

    ADS  Google Scholar 

  7. P.F. Wysocki, J.R. Simpson, D. Lee, Prediction of gain peak wavelength for Er-doped fiber amplifiers and amplifier chains. IEEE Photonics Technol. Lett. 6, 1098–1100 (1994)

    ADS  Google Scholar 

  8. V.L. Mazurczyk, J.L. Zyskind, Polarization dependent gain in erbium doped-fiber amplifiers. IEEE Photonics Technol. Lett. 6, 616–618 (1994)

    ADS  Google Scholar 

  9. J. Nagel, The dynamic behaviour of amplified systems, in Opt. Fiber Commun. Conf. (OFC’98), San Jose, CA, USA (1998), Techn. Digest, paper ThO3

    Google Scholar 

  10. B. Pálsdóttir, Erbium doped AirClad fibers for high power broad band amplifiers and single mode erbium doped fibers for high performance amplifiers and lasers, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’08), San Diego, CA, USA (2008), Techn. Digest, paper OTuJ1

    Google Scholar 

  11. O. Lumholt, J.H. Povlsen, K. Schüsler, A. Bjarklev, S. Dahl-Pedersen, T. Rasmussen, K. Rottwitt, Quantum limited noise figure operation of high gain erbium doped fiber amplifiers. J. Lightwave Technol. 11, 1344–1352 (1993)

    ADS  Google Scholar 

  12. Y. Sun, A.K. Srivastava, J. Zhou, J.W. Sulhoff, Optical fiber amplifiers for WDM networks. Bell Labs Tech. J. 4, 187–206 (1999)

    Google Scholar 

  13. M.N. Zervas, R.I. Laming, D.N. Payne, Efficient erbium-doped fiber amplifiers incorporating an optical isolator. IEEE J. Quantum Electron. 31(3), 472–480 (1995)

    ADS  Google Scholar 

  14. F. Koch, B. Palsdottir, J.O. Olsen, T. Veng, B. Flintham, R. Keys, 30 dBm wideband air-clad EDFA using two pump lasers, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’08), San Diego, CA, USA (2008), Techn. Digest, paper OWU3

    Google Scholar 

  15. K.P. Hansen, J. Broeng, P.M.W. Skovgaard, J.R. Folkenberg, M.D. Nielsen, A. Petersson, T.P. Hansen, C. Jakobsen, H.R. Simonsen, J. Limpert, F. Salin, High-power photonic crystal fiber lasers: design, handling and subassemblies, in Fiber Lasers II: Technology, Systems and Applications, San Jose, CA, USA (2005), Proc. SPIE, vol. 5709, pp. 273–283

    Google Scholar 

  16. O. Schmidt, J. Rothhardt, T. Eidam, F. Röser, J. Limpert, A. Tünnermann, K.P. Hansen, C. Jakobsen, J. Broeng, Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber. Opt. Express 16, 3918–3923 (2008)

    ADS  Google Scholar 

  17. S. Ramachandran, J.W. Nicholson, S. Ghalmi, M.F. Yan, P. Wisk, E. Monberg, F.E. Dimarcello, Light propagation with ultralarge modal areas in optical fibers. Opt. Lett. 31, 1797–1799 (2006)

    ADS  Google Scholar 

  18. S. Ramachandran, K. Brar, S. Ghalmi, K. Aiso, M. Yan, D. Trevor, J. Flemming, C. Headley, P. Wisk, G. Zydzik, M. Fisteyn, E. Monberg, F. Dimarcello, High-power amplification in a 2040 μm2 higher order mode, in Photonics West, San Jose, CA, USA (2007), Techn. Digest, PDP LBN-7

    Google Scholar 

  19. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Opt. Express 19(14), 13218–13224 (2011)

    ADS  Google Scholar 

  20. M. Karow, H. Tünnermann, J. Neumann, D. Kracht, P. Weßels, Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power. Opt. Lett. 37, 4242–4244 (2012)

    ADS  Google Scholar 

  21. A.V. Smith, J.J. Smith, Influence of pump and seed modulation on the mode instability threshold of fiber amplifiers. Opt. Express 20, 24545–24558 (2012)

    ADS  Google Scholar 

  22. K.R. Hansen, T.T. Alkeskjold, J. Broeng, J. Lægsgaard, Thermally induced mode coupling in rare-earth doped fiber amplifiers. Opt. Lett. 37, 2382–2384 (2012)

    ADS  Google Scholar 

  23. K.R. Hansen, T.T. Alkeskjold, J. Broeng, J. Lægsgaard, Theoretical analysis of mode instability in high-power fiber amplifiers. Opt. Express 21(2), 1944–1971 (2013)

    ADS  Google Scholar 

  24. M.M. Johansen, K.R. Hansen, M. Laurila, T.T. Alkeskjold, J. Lægsgaard, Estimating modal instability threshold for photonic crystal rod fiber amplifiers. Opt. Express 21(13), 15409–15417 (2013)

    ADS  Google Scholar 

  25. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340(6140), 1545–1548 (2013)

    ADS  Google Scholar 

  26. N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K.M. Chung, A.P.T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, G. Li, T. Wang, Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt. Express 20(3), 2668–2680 (2012)

    ADS  Google Scholar 

  27. V.A.J.M. Sleiffer, Y. Jung, V. Veljanovski, R.G.H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. Grüner-Nielsen, Y. Sun, D.J. Richardson, S.U. Alam, F. Poletti, J.K. Sahu, A. Dhar, A.M.J. Koonen, B. Corbett, R. Winfield, A.D. Ellis, H. de Waardt, 73.7 Tb/s (\(96\times3\times256\mbox{-Gbs}\)) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA. Opt. Express 20(26), B428–B438 (2012)

    Google Scholar 

  28. R. Ryf, N.K. Fontaine, H. Chen, A.H. Gnauck, Y. Jung, Q. Kang, J.K. Sahu, S.U. Alam, D.J. Richardson, Y. Sun, X. Jiang, L. Grüner-Nielsen, R.V. Jensen, R. Lingle Jr., 72 Tb-s transmission over 179-km all-fiber 6 mode span with two cladding pumped in-line amplifiers, in Proc. 41st Europ. Conf. Opt. Commun. (ECOC’15), Valencia, Spain (2015), paper ID 0634

    Google Scholar 

  29. Q. Kang, E. Lim, Y. Jun, X. Jin, F.P. Payne, S. Alam, D.J. Richardson, Gain equalization of a six-mode-group ring core multimode EDFA, in Proc. 40th Europ. Conf. Opt. Commun. (ECOC’14), Cannes, France (2014), paper P.1.14

    Google Scholar 

  30. C. Simonneau, P. Genevaux, G. Le Cocq, Y. Quiquempois, L. Bigot, A. Boutin, M. Bigot-Astruc, P. Sillard, G. Charlet, 5-Mode amplifier with low modal crosstalk for spatial mode multiplexing transmission with low signal processing complexity, in Proc. 41st Europ. Conf. Opt. Commun. (ECOC’15), Valencia, Spain (2015), paper ID 0131

    Google Scholar 

  31. J.-B. Trinel, Y. Quiquempois, A. Le Rouge, L. Garcia, J.-F. Morizur, G. Labroille, L. Bigot, Optical amplifier sharing for single mode fibers: amplification of 5 non-degenerate modes in an elliptical-core FM-EDFA, in Proc. 41st Europ. Conf. Opt. Commun. (ECOC’15), Valencia, Spain (2015), paper ID:0522

    Google Scholar 

  32. P. Genevaux, C. Simonneau, G. Charlet, Challenges in the design of few mode EDFAs, in Opt. Fiber Commun. Conf. (OFC’16), Anaheim, CA, USA (2016), Techn. Digest, paper Tu2I.2

    Google Scholar 

  33. K. Rottwitt, H.D. Kidorf, A 92 nm bandwidth Raman amplifier, in Opt. Fiber Commun. Conf. (OFC’98), San Jose, CA, USA (1998), Techn. Digest, post-deadline paper PD6

    Google Scholar 

  34. K. Rottwitt, J.H. Povlsen, A. Bjarklev, O. Lumholt, B. Pedersen, T. Rasmussen, Noise in distributed erbium doped fibers. IEEE Photonics Technol. Lett. 5, 218–221 (1993)

    ADS  Google Scholar 

  35. J. Bromage, K. Rottwitt, M.E. Lines, A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles. IEEE Photonics Technol. Lett. 14, 24–26 (2002)

    ADS  Google Scholar 

  36. K. Rottwitt, A. Stentz, Raman amplification in lightwave communication systems, in Optical Fiber Telecommunication IVA, ed. by I. Kaminov, T. Li (Academic Press, San Diego, 2002). Chap. 5

    Google Scholar 

  37. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, E. Rabarrijoana, Pump interactions in a 100 nm bandwidth Raman amplifier. IEEE Photonics Technol. Lett. 11, 530–532 (1999)

    ADS  Google Scholar 

  38. K. Rottwitt, Distributed Raman amplifiers, in Raman Amplification, ed. by G. Agrawal, C. Headley (Academic Press, San Diego, 2005). Chap. 3

    Google Scholar 

  39. K. Rottwitt, J. Bromage, A.J. Stentz, L. Leng, M.E. Lines, H. Smith, Scaling the Raman gain coefficient: applications to germanosilicate fibers. J. Lightwave Technol. 21, 1652–1663 (2003)

    ADS  Google Scholar 

  40. K. Rottwitt, J.H. Povlsen, Analyzing the fundamental properties of Raman amplification in optical fibers. J. Lightwave Technol. 23, 3597–3605 (2005)

    ADS  Google Scholar 

  41. R.W. Hellwarth, Third-order optical susceptibilities of liquids and solids. Prog. Quantum Electron. 5(1), 1–68 (1977)

    ADS  Google Scholar 

  42. S. Popov, E. Vanin, G. Jacobsen, Influence of polarization mode dispersion value in dispersion-compensating fibers on the polarization dependence of Raman gain. Opt. Lett. 27, 848–850 (2002)

    ADS  Google Scholar 

  43. Q. Lin, G.P. Agrawal, Statistics of polarization-dependent gain in fiber-based Raman amplifiers. Opt. Lett. 28, 227–229 (2003)

    ADS  Google Scholar 

  44. Q. Lin, G.P. Agrawal, Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers. J. Opt. Soc. Am. B 20, 1616–1631 (2003)

    ADS  Google Scholar 

  45. J. Bromage, Raman amplification for fiber communication systems. J. Lightwave Technol. 22, 79–93 (2004)

    ADS  Google Scholar 

  46. P.B. Hansen, L. Eskildsen, A.J. Stentz, T.A. Strasser, J. Judkins, J.J. DeMarco, R. Pedrazzani, D.J. Digiovanni, Rayleigh scattering limitations in distributed Raman pre-amplifiers. IEEE Photonics Technol. Lett. 10, 159–161 (1998)

    ADS  Google Scholar 

  47. J. Auyeng, A. Yariv, Spontaneous and stimulated Raman scattering in long low loss fibers. IEEE J. Quantum Electron. QE-14, 347–352 (1978)

    ADS  Google Scholar 

  48. G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, San Diego, 1995)

    MATH  Google Scholar 

  49. J. Stark, P. Mitra, A. Sengupta, Information capacity of nonlinear wavelength division multiplexing fiber optic transmission line. Opt. Fiber Technol. 7, 275–288 (2001)

    ADS  Google Scholar 

  50. M. Nissov, K. Rottwitt, H. Kidorf, F. Kerfoot, Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers. Electron. Lett. 35, 997–998 (1999)

    ADS  Google Scholar 

  51. C.R.S. Fludger, V. Handerek, R.J. Mears, Pump to signal RIN transfer in Raman fiber amplifiers. J. Lightwave Technol. 18, 1140–1148 (2001)

    ADS  Google Scholar 

  52. M.O. van Deventer, Polarization properties of Rayleigh backscattering in single-mode fibers. J. Lightwave Technol. 11, 1895–1899 (1993)

    ADS  Google Scholar 

  53. L.F. Mollenauer, K. Smith, Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain. Opt. Lett. 13, 675–677 (1988)

    ADS  Google Scholar 

  54. D. Fishman, W.A. Thompson, L. Vallone, LambdaXtreme transport system; R&D of a high capacity system for low cost ultra long haul DWDM transport. Bell Labs Tech. J. 11, 27–53 (2006)

    Google Scholar 

  55. G. Charlet, E. Corbel, J. Lazaro, A. Klekamp, R. Dischler, P. Tran, W. Idler, H. Mandoyan, A. Konczykowska, F. Jorge, S. Bigo, WDM transmission at 6 Tbit/s capacity over transatlantic distance, using 42.7-Gb/s differential phase-shift keying without pulse carver. J. Lightwave Technol. 23, 104–107 (2005)

    ADS  Google Scholar 

  56. A.H. Gnauck, G. Charlet, P. Tran, P.J. Winzer, C.R. Doerr, J.C. Centanni, E.C. Burrows, T. Kawanishi, T. Sakamoto, K. Higuma, 25.6 Tb/s WDM transmission of polarization multiplexed RZ-DQPSK signals. J. Lightwave Technol. 26, 79–84 (2008)

    ADS  Google Scholar 

  57. G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O.B. Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, S. Bigo, Transmission of 16.4 bit/s capacity over 2550 km using PDM QPSK modulation format and coherent receiver. J. Lightwave Technol. 27, 153–157 (2009)

    ADS  Google Scholar 

  58. R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. Gnauck, C.A. Bolle, M. Esmaeelpour, P.J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, R. Lingle, Mode-equalized distributed Raman amplification in 137-km few-mode fiber, in Proc. 37th Europ. Conf. Opt. Commun. (ECOC’11), Geneva, Switzerland (2011), PDP Th.13.K5

    Google Scholar 

  59. R. Ryf, R.-J. Essiambre, J. von Hoyningen-Huene, P.J. Winzer, Analysis of mode-dependent gain in Raman amplified few-mode fiber, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’12), Los Angeles, CA, USA (2012), Techn. Digest, paper OW1D.2

    Google Scholar 

  60. R. Ryf, M.A. Mestre, S. Randel, C. Schmidt, A.H. Gnauck, R. Essiambre, P.J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D.W. Peckham, A. McCurdy, R. Lingle, Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span. IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012)

    ADS  Google Scholar 

  61. D. Jia, H. Zhang, Z. Ji, N. Bai, G. Li, Optical fiber amplifiers for space-division multiplexing. Front. Optoelectron. 5(4), 351–357 (2012)

    Google Scholar 

  62. J. Zhou, An analytical approach for gain optimization in multimode fiber Raman amplifiers. Opt. Express 22(18), 21393–21402 (2014)

    ADS  Google Scholar 

  63. P.J. Winzer, G.J. Foschini, Outage calculations for spatially multiplexed fiber links, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’11), Los Angeles, CA, USA (2011), Techn. Digest, paper OThO5

    Google Scholar 

  64. K.-P. Ho, J.M. Kahn, Mode-dependent loss and gain statistics effects on mode-division multiplexing. Opt. Express 19(17), 16612–16635 (2011)

    ADS  Google Scholar 

  65. K. Rottwitt, K. Nielsen, S.M.M. Friis, M.A.U. Castaneda, Challenges in higher order mode Raman amplifiers, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, paper Tu3C.6

    Google Scholar 

  66. J. Bromage, J.-C. Bouteiller, H.J. Thiele, K. Brar, L.E. Nelson, S. Stulz, C. Headley, R. Boncek, J. Kim, A. Klein, G. Baynham, L.V. Jørgensen, L. Grüner-Nielsen, R.L. Lingle Jr., D.J. DiGiovanni, WDM transmission over multiple long spans with bidirectional Raman Pumping. J. Lightwave Technol. 22(1), 225–231 (2004)

    ADS  Google Scholar 

  67. R. Ryf, M. Esmaeelpour, N.K. Fontaine, H. Chen, A.H. Gnauck, R.-J. Essiambre, J. Toulouse, Y. Sun, R. Lingle Jr., Distributed Raman amplification based transmission over 1050 km few mode-fiber, in Proc. 41st Europ. Conf. Opt. Commun. (ECOC’15), Valencia, Spain (2015), paper ID 0760

    Google Scholar 

  68. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 11, 1731–1739 (2003)

    ADS  Google Scholar 

  69. D. Dimitropoulos, D.R. Solli, R. Claps, O. Boyraz, B. Jalali, Noise figure of silicon Raman amplifiers. J. Lightwave Technol. 26, 847–852 (2008)

    ADS  Google Scholar 

  70. K. Rottwitt, P. Tidemand-Lichtenberg, Nonlinear Optics, Principles and Applications (CRC Press, Boca Raton, 2015)

    MATH  Google Scholar 

  71. E. Myslivets, N. Alic, S. Radic, High resolution measurement of arbitrary-dispersion fibers: dispersion map reconstruction techniques. J. Lightwave Technol. 28(23), 3478–3487 (2010)

    ADS  Google Scholar 

  72. L.S. Rishøj, A.S. Svane, T. Lund-Hansen, K. Rottwitt, Quantitative evaluation of standard deviations of group velocity dispersion in optical fibre using parametric amplification. Electron. Lett. 50(3), 199–200 (2014)

    ADS  Google Scholar 

  73. B.P.-P. Kuo, J.M. Fini, L. Grüner-Nielsen, S. Radic, Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis. Opt. Express 20(17), 18611–18619 (2012)

    ADS  Google Scholar 

  74. D. Noordegraaf, M. Lorenzen, C.V. Nielsen, K. Rottwitt, Brillouin scattering in fiber optical parametric amplifiers, in Proc. 9th Internat. IEEE Conf. Transparent Optical Netw. (ICTON’07), Rome, Italy (2007), vol. 1, pp. 197–200

    Google Scholar 

  75. M.E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge Univ. Press, Cambridge, 2008)

    Google Scholar 

  76. S.M.M. Friis, K. Rottwitt, C.J. McKinstrie, Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers. Opt. Express 21(24), 29320–29331 (2013)

    ADS  Google Scholar 

  77. P.L. Voss, K.G. Köprülü, P. Kumar, Raman-noise-induced quantum limits for \(\chi^{(3)}\) nondegenerate phase-sensitive amplification and quadrature squeezing. J. Opt. Soc. Am. B 23(4), 598.610 (2006)

    MathSciNet  Google Scholar 

  78. C.J. McKinstrie, S. Radic, M.G. Raymer, Quantum noise properties of parametric amplifiers driven by two pump waves. Opt. Express 12, 5037–5066 (2004)

    ADS  Google Scholar 

  79. Z. Tong, A. Bogris, M. Karlsson, P.A. Andrekson, Full characterization of the signal and idler noise figure spectra in single-pumped fiber optical parametric amplifiers. Opt. Express 18(3), 2884–2893 (2010)

    ADS  Google Scholar 

  80. D.J. Blessing, C.J. McKinstrie, Z. Tong, C. Lundstrom, P. Andrekson, M. Karlsson, E. Tipsuwannakul, L. Gruner-Nielsen, H. Toda, B.J. Puttnam, Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nat. Photonics 5(7), 430–436 (2001)

    Google Scholar 

  81. K. Rottwitt, M.R. Lorenzen, D. Noordegraaf, C. Peucheret, Gain characteristics of a saturated fiber optic parametric amplifier, in Proc. 10th Internat. IEEE Conf. Transparent Optical Netw. (ICTON’08), Athens, Greece (2008), vol. 1, pp. 62–64, paper Mo.D1.1

    Google Scholar 

  82. P. Kylemark, P.O. Hedekvist, H. Sunnerud, M. Karlsson, P.A. Andrekson, Noise characteristics of fiber optical parametric amplifiers. J. Lightwave Technol. 22, 409–416 (2004)

    ADS  Google Scholar 

  83. J. Hansryd, P.A. Andrekson, M. Westlund, J. Li, P.-O. Hedekvist, Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002)

    ADS  Google Scholar 

  84. M. Lorenzen, D. Noordegraaf, C.V. Nielsen, O. Odgaard, L. Grüner-Nielsen, K. Rottwitt, Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’08), San Diego, CA, USA (2008), Techn. Digest, paper OML1

    Google Scholar 

  85. J.M. Chavez Boggio, J.R. Windmiller, M. Knutzen, R. Jiang, C. Bres, N. Alic, B. Stossel, K. Rottwitt, S. Radic, 730-nm optical parametric conversion from near- to short-wave infrared band. Opt. Express 16, 5435–5443 (2008)

    ADS  Google Scholar 

  86. P.A. Andrekson, M. Westlund, H. Sunnerud, High resolution optical waveform sampling using fiber-optic parametric amplifiers, in Proc. 2008 IEEE/LEOS Winter Topical Meeting, Sorrento, Italy (2008), pp. 55–56, paper MB3

    Google Scholar 

  87. P.A. Andrekson, M. Westlund, Nonlinear optical fiber based high resolution all-optical waveform sampling. Laser Photonics Rev. 1, 231–248 (2007)

    ADS  Google Scholar 

  88. J.M. Chavez Boggio, C. Lundström, J. Yang, H. Sunnerud, P.A. Andrekson, Double-pumped FOPA with 40 dB flat gain over 81 nm bandwidth, in Proc. 34th Europ. Conf. Opt. Commun. (ECOC’08), Brussels, Belgium (2008), paper 3B5

    Google Scholar 

  89. C. Peucheret, M. Lorenzen, J. Seonne, D. Noordegraaf, C.V. Nielsen, L. Grüner-Nielsen, K. Rottwitt, Amplitude regeneration of RZ-DPSK signals in single pump fiber optic parametric amplifiers. IEEE Photonics Technol. Lett. 21, 872–874 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Rottwitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rottwitt, K. (2017). Fiber Amplifiers. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-319-42367-8_12

Download citation

Publish with us

Policies and ethics