Skip to main content

Radiofrequency Ablation of Pancreatic Mass

  • Chapter
  • First Online:
Diagnosis and Endoscopic Management of Digestive Diseases

Abstract

Stage III pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, and no gold standard treatment has been established so far. Radiofrequency ablation (RFA) is a new treatment option for locally advanced pancreatic cancer (LAPC), but its application is still very limited. We report our experience on 200 patients treated with pancreatic RFA as cytoreductive intent associated with chemoradiotherapy in a multimodal setting. In our series, median survival was 19 months and progression-free survival was 13 months. The results do not seem to depend on the rate of the ablated area. Postoperative course was uneventful in 76 % of cases, abdominal complications occurred in 23 % of patients, and the mortality rate was 2 %. However, after the last technical changes (temperature 80 °C, limited ablation, use of single cool-tip needle, safety distance from the duodenum), we found a significant reduction of morbidity (from 25% to 13%) and mortality (from 2% to 0%). RFA with endoscopic ultrasound approach (EUS-RFA) has been recently proposed, but the experience is still very limited. The advantages of EUS-RFA are being a less invasive approach, more precise placement of the needle due to high-resolution images, and short hospital stay. Moreover, the procedure is potentially repeatable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378:607–20.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lynch SM, Vrieling A, Lubin JH, et al. Cigarette smoking and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Am J Epidemiol. 2009;170:403–13.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Raimondi S, Maisonneuve R, Lowenfels AB. Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol. 2009;6:699–708.

    Article  PubMed  Google Scholar 

  4. Vrieling A, Bueno-de-Mesquita HB, et al. Cigarette smoking, environmental tobacco smoke exposure and pancreatic cancer risk on the European prospective investigation into cancer and nutrition. Int J Cancer. 2010;126:2394–403.

    CAS  PubMed  Google Scholar 

  5. Larsson SC, Orsini N, Wolk A. Body mass index and pancreatic cancer risk: a meta-analysis of prospective studies. Int J Cancer. 2007;120:1993–8.

    Article  CAS  PubMed  Google Scholar 

  6. Li D, Morris JS, Liu J, et al. Body mass index and risk, age of onset, and survival in patients with pancreatic cancer. JAMA. 2009;301:2553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Patel AV, Rodriguez C, Bernstein L, et al. Obesity, recreational physical activity, and risk of pancreatic cancer in a large U.S. Cohort. Cancer Epidemiol Biomarkers Prev. 2005;14:459–66.

    Article  PubMed  Google Scholar 

  8. Mancuso TF, el-Attar AA. Cohort study of workers exposed to beta naphthylamine and benzidine. J Occup Med. 1967;9:277–85.

    CAS  PubMed  Google Scholar 

  9. Gupta S, Vittinghoff E, Bertenthal D, et al. New-onset diabetes and pancreatic cancer. Clin Gastroenterol Hepatol. 2006;4:1366–72.

    Article  PubMed  Google Scholar 

  10. Mekan SF, Safa MM, Komrokji RS, et al. Is hyperglycemia a prognostic factor in pancreatic cancer? [abstract]. J Clin Oncol. 2006;24 Suppl 1 Abstract 14076. J Natl Compr Canc Netw.

    Google Scholar 

  11. Chari ST, Leibson CL, Rabe KG, et al. Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology. 2005;129:504–11.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang W, Chen S, Brune KA, et al. PancPRO: risk assessment for individuals with a family history of pancreatic cancer. J Clin Oncol. 2007;25:1417–22.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lynch HT, Smyrk T, Kern SE, et al. Familial pancreatic cancer: a review. Semin Oncol. 1996;23:251–75.

    CAS  PubMed  Google Scholar 

  14. Hahn SA, Greenhalf B, Ellis I, et al. BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst. 2003;95:214–21.

    Article  CAS  PubMed  Google Scholar 

  15. Ferrone CR, Levine DA, Tang LH, et al. BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. J Clin Oncol. 2009;27:433–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Slater EP, Langer P, Niemczyk E, et al. PALB2 mutations in European familial pancreatic cancer families. Clin Genet. 2010;78(5):490–4.

    Article  CAS  PubMed  Google Scholar 

  17. Yeo CJ, Abrams RA, Grochow LB, et al. Pancreaticoduodenectomy for pancreatic adenocarcinoma: postoperative adjuvant chemoradiation improves survival. A prospective, single institution experience. Ann Surg. 1997;225:621–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Allison DC, Piantadosi S, Hruban RH, et al. DNA content and other factors associated with ten year survival after resection of pancreatic carcinoma. J Surg Oncol. 1998;67:151–9.

    Article  CAS  PubMed  Google Scholar 

  19. Sohn TA, Yeo CJ, Cameron JL, et al. Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. J Gastrointest Surg. 2000;4:567–79.

    Article  CAS  PubMed  Google Scholar 

  20. Howard TJ, Krug JE, Yu J, et al. A margin-negative R0 resection accomplished with minimal postoperative complications is the surgeon’s contribution to long-term survival in pancreatic cancer. J Gastrointest Surg. 2006;10:1338–45.

    Article  PubMed  Google Scholar 

  21. Zervos EE, Rosemurgy AS, Al-Saif O, Durkin AJ. Surgical management of early-stage pancreatic cancer. Cancer Control. 2004;11:23–31.

    PubMed  Google Scholar 

  22. Raut CP, Tsen JF, Sun CC, Wang H, Wolff RA, Crane CH, et al. Impact of resection status on pattern of failure and survival after pancreaticoduodenectomy for pancreatic adenocarcinoma. Ann Surg. 2007;246:52–60.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Huguet F, Andre T, Hammel P, et al. Impact of chemoradiotherapy after disease control with chemotherapy in locally advanced pancreatic adenocarcinoma in GERCOR phase II and III studies. J Clin Oncol. 2007;25:326–31.

    Article  CAS  PubMed  Google Scholar 

  24. Krishnan S, Rana V, Janjan NA, et al. Induction chemotherapy selects patients with locally advanced, unresectable pancreatic cancer for optimal benefit from consolidative chemoradiation therapy. Cancer. 2007;110:47–55.

    Article  PubMed  Google Scholar 

  25. Huguet F, Girard N, Seblain-El Guerche C, et al. Chemoradiotherapy in the management of locally advanced pancreatic carcinoma. J Clin Oncol. 2009;27:2269–77.

    Article  CAS  PubMed  Google Scholar 

  26. Ko AH, Quivey JM, Venook AP, et al. A phase II study of fixed-dose rate gemcitabine plus low dose cisplatin followed by consolidative chemoradiation for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2007;68:809–16.

    Article  CAS  PubMed  Google Scholar 

  27. Gillen S, Schuster T, Meyer Zum Büschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7(4):e1000267. Review.

    Google Scholar 

  28. Strobel O, Berens V, Hinz U, Hartwig W, Hackert T, Bergmann F, Debus J, Jäger D, Büchler MW, Werner J. Resection after neoadjuvant therapy for locally advanced, “unresectable” pancreatic cancer. Surgery. 2012;152(3 Suppl 1):S33–42. doi:10.1016/j.surg.2012.05.029. Epub 2012 Jul 6.

    Article  PubMed  Google Scholar 

  29. Andriulli A, Festa V, Botteri E, Valvano MR, Koch M, Bassi C, Maisonneuve P, Sebastiano PD. Neoadjuvant/preoperative gemcitabine for patients with localized pancreatic cancer: a meta-analysis of prospective studies. Ann Surg Oncol. 2012;19(5):1644–62. doi:10.1245/s10434-011-2110-8. Epub 2011 Oct 20.

    Article  PubMed  Google Scholar 

  30. Sahora K, Kuehrer I, Eisenhut A, Akan B, Koellblinger C, Goetzinger P, Teleky B, Jakesz R, Peck-Radosavljevic M, Ba’ssalamah A, Zielinski C, Gnant M. NeoGemOx: gemcitabine and oxaliplatin as neoadjuvant treatment for locally advanced, nonmetastasized pancreatic cancer. Surgery. 2011;149(3):311–20. doi:10.1016/j.surg.2010.07.048.Epub2010Sep.

    Article  PubMed  Google Scholar 

  31. Laurence JM, Tran PD, Morarji K, Eslick GD, Lam VW, Sandroussi C. A systematic review and meta-analysis of survival and surgical outcomes following neoadjuvant chemoradiotherapy for pancreatic cancer. J Gastrointest Surg. 2011;15(11):2059–69. doi:10.1007/s11605-011-1659-7. Epub 2011 Sep 13.

    Article  PubMed  Google Scholar 

  32. Barugola G, Partelli S, Crippa S, Capelli P, D’Onofrio M, Pederzoli P, Falconi M. Outcomes after resection of locally advanced or borderline resectable pancreatic cancer after neoadjuvant therapy. Am J Surg. 2012;203(2):132–9.

    Article  PubMed  Google Scholar 

  33. Siperstein E, Gitomirski A. History and technological aspects of radiofrequency thermoablation. Cancer J. 2000;6(4):5293–303.

    Google Scholar 

  34. Pereira PL. Actual role of radiofrequency ablation of liver metastases. Eur Radiol. 2007;17(8):2062–70.

    Article  PubMed  Google Scholar 

  35. Clasen S, Krober SM, Kosan B, et al. Pathomorphologic evaluation of pulmonary radiofrequency ablation: proof of cell death is characterized by DNA fragmentation and apoptotic bodies. Cancer. 2008;113(11):3121–9.

    Article  PubMed  Google Scholar 

  36. Wright S, Sampson LA, Warner TF, Mahvi DM, Lee FT. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology. 2005;236(1):132–9.

    Article  PubMed  Google Scholar 

  37. Siriwardena AK. Radiofrequency ablation for locally advanced cancer of the pancreas. J Oncol Pract. 2006;7:1–4.

    Google Scholar 

  38. Hadjicostas P, Malakounides N, Varianos C, Kitiris E, Lerni F, Symeonides P. Radiofrequency ablation in pancreatic cancer. HPB. 2006;8:61–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spiliotis JD, Datsis AC, Michalopoulos NV, Kekelos SP, Vaxevanidou A, Rogdakis AG, et al. Radiofrequency ablation combined with palliative surgery may prolong survival of patients with advanced cancer of the pancreas. Langenbecks Arch Surg. 2007;392:55–60.

    Article  PubMed  Google Scholar 

  40. Matsui Y, Nakagawa A, Kamiyama Y, Yamamoto K, Kubo N, Nakase Y. Selective thermocoagulation of unresectable pancreatic cancers by using radiofrequency capacitive heating. Pancreas. 2000;20:14–20.

    Article  CAS  PubMed  Google Scholar 

  41. Varshney S, Sewkani A, Sharma S, Kapoor S, Naik S, Sharma A, Patel K. Radiofrequency ablation of unresectable pancreatic carcinoma: feasibility, efficacy and safety. J Oncol Pract. 2006;11:7(1).

    Google Scholar 

  42. Molinari E, Bassi C, Salvia R, Butturini G, Crippa S, Talamini G, et al. Amylase value in drains after pancreatic resection as predictive factor of postoperative pancreatic fistula: results of a prospective study in 137 patients. Ann Surg. 2007;246:281–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Girelli R, Frigerio I, Salvia R, Barbi E, Tinazzi Martini P, Bassi C. Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer. Br J Surg. 2010;97:220–5.

    Article  CAS  PubMed  Google Scholar 

  44. Koninger J, Wente MN, Muller MW, Gutt CN, Friess H, Buchler MW. Surgical palliation in patients with pancreatic cancer. Langenbecks Arch Surg. 2007;392:13–21.

    Article  PubMed  Google Scholar 

  45. Girelli R, Frigerio I, Giardino A, Regi P, Gobbo S, Malleo G, Salvia R, Bassi C. Results of 100 pancreatic radiofrequency ablations in the context of a multimodal strategy for stage III ductal adenocarcinoma. Langenbecks Arch Surg. 2013;398(1):63–9.

    Article  PubMed  Google Scholar 

  46. Nikfarjam M, Muralidharan V, Christophi C. Mechanisms of focal heat destruction of liver tumors. J Surg Res. 2005;127:208.

    Article  PubMed  Google Scholar 

  47. Gravante G, Sconocchia G, Ong SL, Dennison AR, Lloyd DM. Immunoregulatory effects of liver ablation therapies for the treatment of primary and metastatic liver malignancies. Liver Int. 2009;29(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  48. Soanes WA, Ablin RJ, Gonder MJ. Remission of metastatic lesions following cryosurgery in prostatic cancer: immunologic considerations. J Urol. 1970;104(1):154–9.

    CAS  PubMed  Google Scholar 

  49. Ablin RJ, Soanes WA, Gonder MJ. Elution of in vivo bound antiprostatic epithelial antibodies following multiple cryotherapy of carcinoma of prostate. Urology. 1973;2(3):276–9.

    Article  CAS  PubMed  Google Scholar 

  50. Sanchez-Ortiz RF, Tannir N, Ahrar K, Wood CG. Spontaneous regression of pulmonary metastases from renal cell carcinoma after radio frequency ablation of the primary tumor: an in situ tumor vaccine? J Urol. 2003;170(1):178–9.

    Article  PubMed  Google Scholar 

  51. Chu KF, et al. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14(3):199–208.

    Article  CAS  PubMed  Google Scholar 

  52. Neil Bhardwaj, John Dormer, Fateh Ahmad, Andrew D. Strickland, Gianpiero Gravante, Ian Beckingham, Kevin West, Ashley R. Dennison, David M. Lloyd. Heat shock protein 70 expression following hepatic radiofrequency ablation is affected by adjacent vasculature. J Surg Res. 2012;173(2):249–57.

    Google Scholar 

  53. Frich L, Bjornland K, Pettersen S, Clausen OP, Gladhaug IP. Increased activity of matrix metalloproteinase 2 and 9 after hepatic radiofrequency ablation. J Surg Res. 2006;135:297–304.

    Article  CAS  PubMed  Google Scholar 

  54. Rai R, Richardson C, Flecknell P, Robertson H, Burt A, Manas DM. Study of apoptosis and heat shock protein (HSP) expression in hepatocytes following radiofrequency ablation (RFA). J Surg Res. 2005;129:147–51.

    Article  CAS  PubMed  Google Scholar 

  55. Rea IM, McNerlan S, Pockley AG. Serum heat shock protein and anti-heat shock protein antibody levels in aging. Exp Gerontol. 2001;36:341–52.

    Article  CAS  PubMed  Google Scholar 

  56. Schueller G, Kettenbach J, Sedivy R, Bergmeister H, Stift A, Fried J, Gnant M, Lammer J. Expression of heat shock proteins in human hepatocellular carcinoma after radiofrequency ablation in an animal model. Oncol Rep. 2004;12:495–9.

    CAS  PubMed  Google Scholar 

  57. Schueller G, Kettenbach J, Sedivy R, Stift A, Friedl J, Gnant M, Lammer J. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int J Oncol. 2004;24:609–13.

    CAS  PubMed  Google Scholar 

  58. Stuart K. Calderwood, Salamatu S. Mambula, Phillip J. Gray, Jr. Extracellular heat shock proteins in cell signaling and immunity. Ann N Y Acad Sci. 2007;1113:28–39. C 2007 New York Academy of Sciences.

    Google Scholar 

  59. Beere HM. ‘The stress of dying’: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci. 2004;117:2641–51.

    Article  CAS  PubMed  Google Scholar 

  60. Tytell M, Greenberg SG, Lasek RJ. Heat shock-like protein is transferred from glia to axon. Brain Res. 1986;363:161–4.

    Article  CAS  PubMed  Google Scholar 

  61. Hightower LE, Guidon Jr PT. Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol. 1989;138:257–66.

    Article  CAS  PubMed  Google Scholar 

  62. Mambula SS, Calderwood SK. Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol. 2006;177:7849–57.

    Article  CAS  PubMed  Google Scholar 

  63. Robinson MB, et al. Extracellular heat shock protein 70: a critical component for motoneuron survival. J Neurosci. 2005;25:9735–45.

    Article  CAS  PubMed  Google Scholar 

  64. Clayton A, et al. Induction of heat shock proteins in B-cell exosomes. J Cell Sci. 2005;118:3631–8.

    Article  CAS  PubMed  Google Scholar 

  65. Davies EL, et al. Heat shock proteins form part of a danger signal cascade in response to lipopolysaccharide and GroEL. Clin Exp Immunol. 2006;145:183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hunter-Lavin C, et al. Hsp70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun. 2004;324:511–7.

    Article  CAS  PubMed  Google Scholar 

  67. Campisi J, Fleshner M. Role of extracellular HSP72 in acute stressinduced potentiation of innate immunity in active rats. J Appl Physiol. 2003;94:43–52.

    Article  CAS  PubMed  Google Scholar 

  68. Mambula SS, Calderwood SK. Heat induced release of Hsp70 from prostate carcinoma cells involves both active secretion and passive release from necrotic cells. Int J Hyperthermia. 2006;22:575–85.

    Article  CAS  PubMed  Google Scholar 

  69. Todryk S, et al. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol. 1999;163:1398–408.

    CAS  PubMed  Google Scholar 

  70. Mackenzie A, et al. Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity. 2001;15:825–35.

    Article  CAS  PubMed  Google Scholar 

  71. Baraldi PG, Di Virgilio F, Romagnoli R. Agonists and antagonists acting at P2’7 receptor. Curr Top Med Chem. 2004;4:1707–17.

    Article  CAS  PubMed  Google Scholar 

  72. Srivastava PK. Heat shock protein-based novel immunotherapies. Drug News Perspect. 2000;13:517–22.

    Article  CAS  PubMed  Google Scholar 

  73. Srivastava PK, Amato RJ. Heat shock proteins: the ‘Swiss Army Knife’ vaccines against cancers and infectious agents. Vaccine. 2001;19:2590–7.

    Article  CAS  PubMed  Google Scholar 

  74. Calderwood SK, Theriault JR, Gong J. Message in a bottle: role of the 70 kilodalton heat shock protein family in anti-tumor immunity. Eur J Immunol. 2005;35:2518–27.

    Article  CAS  PubMed  Google Scholar 

  75. Asea A, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000;6:435–42.

    Article  CAS  PubMed  Google Scholar 

  76. Asea A, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002;277:15028–34.

    Article  CAS  PubMed  Google Scholar 

  77. Noessner E, et al. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J Immunol. 2002;169:5424–32.

    Article  CAS  PubMed  Google Scholar 

  78. Singh-Jasuja H, et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med. 2000;191:1965–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dressel R, Lubbers M, Walter L, Herr W, Gunther E. Enhanced susceptibility to cytotoxic T lymphocytes without increase of MHC class I antigen expression after conditional overexpression of heat shock protein 70 in target cells. Eur J Immunol. 1999;29:3925.

    Article  CAS  PubMed  Google Scholar 

  80. Widenmayer M, Shebzukhov Y, Haen SP, Schmidt D, Clasen S, Boss Am Kuprash DV, Nedospanov SA, Stenzl A, Aebert H, Wernet D, Stevanovic S, Pereira P, Rammensee HG, Gouttefangeas C. Analysis of tumor antigen-specific T cell and antibodies in cancer patients treated with radiofrequency ablation. Int J Cancer. 2011;128:2653–62.

    Article  Google Scholar 

  81. Wissniowski TT, Hansler J, Neureiter D, Frieser M, Schaber S, Esslinger B, Voll R, Strobel D, Hahn EG, Schuppan D. Activation of tumor-specific T lymphocytes by radio-frequency ablation of the VX2 hepatoma in rabbits. Cancer Res. 2003;63:6496–500.

    CAS  PubMed  Google Scholar 

  82. Zerbini A, Pilli M, Penna A, Pelosi G, Schianchi C, Molinari A, Schivazappa S, Zibera C, Fagnoni FF, Ferrari C, Missale G. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res. 2006;66:1139–46.

    Article  CAS  PubMed  Google Scholar 

  83. Napoletano C, Taurino F, Biffoni M, De Majo A, Coscarella G, Bellati F, Rahimi H, Pauselli S, Pellicciotta I, Burchell JM, Gaspari LA, Ercoli L, et al. RFA strongly modulates the immune system and antitumor immune responses in metastatic liver patients. Int J Oncol. 2008;32:481–90.

    PubMed  Google Scholar 

  84. Hansler J, Wissniowski TT, Schuppan D, Witte A, Bernatik T, Hahn EG, Strobel D. Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases. World J Gastroenterol. 2006;12:3716–21.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chen T, Guo J, et al. Heat shock protein 70, released from heat stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol. 2009;182:1449–59.

    Article  CAS  PubMed  Google Scholar 

  86. Harris HE, Andersson U. The nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol. 2004;34:1503–12.

    Article  Google Scholar 

  87. Fietta AM, Morosini M, et al. Systemic inflammatory response and downmodulation of peripheral CD25Foxp3 T-regulatory cells in patients undergoing radiofrequency thermal ablation or lung cancer. Hum Immunol. 2009;70(7):477–86.

    Article  CAS  PubMed  Google Scholar 

  88. Rovere-Querini P, Manfredi A. Tumour destruction and in situ delivery of antigen presenting cells promote anti-neoplastic immune responses: implications for the immunotherapy of pancreatic cancer. J Oncol Pract. 2004;5(4):308–14.

    Google Scholar 

  89. D’Onofrio M, Barbi E, Girelli R, Martone E, et al. Radiofrequency ablation of locally advanced pancreatic adenocarcinoma: an overview. World J Gastroenterol. 2010;16(28):3478–83.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Frigerio I, Girelli R, Giardino A, Regi P, Salvia R, Bassi C. Short term chemotherapy followed by radiofrequency ablation in stage III pancreatic cancer: results from a single center. J HBP Cancer. 2013;20:574–7.

    Google Scholar 

  91. Goldberg SN, Mallery S, Gazelle GS, Brugge WR. EUS-guided radiofrequency ablation in the pancreas: results in a porcine model. Gastrointest Endosc. 1999;50(3):392–401. doi:10.1053/ge.1999.v50.98847.

    Article  CAS  PubMed  Google Scholar 

  92. Carrara S, Arcidiacono PG, Albarello L, Addis A, Enderle MD, Boemo C, Campagnol M, Ambrosi A, Doglioni C, Testoni PA. Endoscopic ultrasound-guided application of a new hybrid cryotherm probe in porcine pancreas: a preliminary study. Endoscopy. 2008;40(4):321–6. doi:10.1055/s-2007-995595.

    Article  CAS  PubMed  Google Scholar 

  93. Carrara S, Arcidiacono PG, Albarello L, Addis A, Enderle MD, Boemo C, Neugebauer A, Campagnol M, Doglioni C, Testoni PA. Endoscopic ultrasound-guided application of a new internally gas-cooled radiofrequency ablation probe in the liver and spleen of an animal model: a preliminary study. Endoscopy. 2008;40(9):759–63. doi:10.1055/s-2008-1077520.

    Article  CAS  PubMed  Google Scholar 

  94. Varadarajulu S, Jhala NC, Drelichman ER. EUS-guided radiofrequency ablation with a prototype electrode array system in an animal model (with video). Gastrointest Endosc. 2009;70(2):372–6. doi:10.1016/j.gie.2009.03.008.

    Article  PubMed  Google Scholar 

  95. Gaidhane M, Smith I, Ellen K, Gatesman J, Habib N, Foley P, Moskaluk C, Kahaleh M. Endoscopic Ultrasound-Guided Radiofrequency Ablation (EUS-RFA) of the pancreas in a Porcine model. Gastroenterol Res Pract. 2012;2012:431451. doi:10.1155/2012/431451. PubMed PMID: 23049547, PubMed Central PMCID: PMC3459266.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sethi A, Ellrichmann M, Dhar S, Hadeler KG, Kahle E, Seehusen F, Klapper W, Habib N, Fritscher-Ravens A. Endoscopic ultrasound-guided lymph node ablation with a novel radiofrequency ablation probe: feasibility study in an acute porcine model. Endoscopy. 2014;46(5):411–5. doi:10.1055/s-0034-1364933.

    Article  PubMed  Google Scholar 

  97. Kim HJ, Seo DW, Hassanuddin A, Kim SH, Chae HJ, Jang JW, Park do H, Lee SS, Lee SK, Kim MH. EUS-guided radiofrequency ablation of the porcine pancreas. Gastrointest Endosc. 2012;76(5):1039–43. doi:10.1016/j.gie.2012.07.015.

    Article  PubMed  Google Scholar 

  98. Arcidiacono PG, Carrara S, Reni M, Petrone MC, Cappio S, Balzano G, Boemo C, Cereda S, Nicoletti R, Enderle MD, Neugebauer A, von Renteln D, Eickhoff A, Testoni PA. Feasibility and safety of EUS-guided cryothermal ablation in patients with locally advanced pancreatic cancer. Gastrointest Endosc. 2012;76(6):1142–51. doi:10.1016/j.gie.2012.08.006.

    Article  PubMed  Google Scholar 

  99. Pai M, Habib N, Senturk H, Lakhtakia S, Reddy N, Cicinnati VR, Kaba I, Beckebaum S, Drymousis P, Kahaleh M, Brugge W. Endoscopic ultrasound guided radiofrequency ablation, for pancreatic cystic neoplasms and neuroendocrine tumors. World J Gastrointest Surg. 2015;7(4):52–9. doi:10.4240/wjgs.v7.i4.52. PubMed PMID: 25914783, PubMed Central PMCID: PMC4390891.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lakhtakia S, Ramchandani M, Galasso D, Gupta R, Venugopal S, Kalpala R, Reddy DN. EUS-guided radiofrequency ablation for management of pancreatic insulinoma by using a novel needle electrode (with videos). Gastrointest Endosc. 2015. doi:10.1016/j.gie.2015.08.085.

    Google Scholar 

  101. Song TJ, Seo DW, Lakhtakia S, Reddy N, Oh DW, Park DH, Lee SS, Lee SK, Kim MH. Initial experience of EUS-guided radiofrequency ablation of unresectable pancreatic cancer. Gastrointest Endosc. 2015. doi:10.1016/j.gie.2015.08.048.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Girelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Girelli, R., Isabella, F., Giardino, A., Regi, P., Scopelliti, F., Butturini, G. (2017). Radiofrequency Ablation of Pancreatic Mass. In: Conigliaro, R., Frazzoni, M. (eds) Diagnosis and Endoscopic Management of Digestive Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-42358-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42358-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42356-2

  • Online ISBN: 978-3-319-42358-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics