Skip to main content

Parameter Identification of Nonlinear Viscoelastic Material Model Using Finite Element-Based Inverse Analysis

  • Conference paper
  • First Online:
Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9

Abstract

This study focuses on identifying the parameters of a nonlinear viscoelastic model from Berkovich nanoindentation experiment of an epoxy polymer using finite element-based inverse analysis approach. Instead of traditional approach of online optimization of model parameters, where finite element computation is placed inside of the optimization algorithm, this study utilizes a surrogate or meta-modeling approach. The surrogate model, which is based on Proper Orthogonal Decomposition (POD) and Radial Basis Function (RBF), is trained with finite element load–displacement data obtained by varying the different model parameters in a parameter space. Once trained POD–RBF based surrogate model is used to approximate the nanoindentation simulation data inside a multi-objective Genetic Algorithm. Current efforts are focused to validate identified parameter set of nonlinear viscoelastic model for different experimental conditions (e.g. maximum load, loading/unloading rate).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamim, S.U.A.: Variation of mechanical properties due to hygrothermal ageing and permanent changes upon redrying in clay/epoxy nanocomposites. ProQuest Dissertations and Theses, p. 49 (2011)

    Google Scholar 

  2. Hamim, S.U., Singh, R.P.: Effect of hygrothermal aging on the mechanical properties of fluorinated and nonfluorinated clay-epoxy nanocomposites. Int. Sch. Res. Not. 2014, 1–13 (2014)

    Google Scholar 

  3. McKee, C., Last, J., Russell, P., Murphy, C.: Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Eng. B Rev. 17(3), 155–164 (2011)

    Article  Google Scholar 

  4. Hamim, S.U., Mishra, K., Singh, R.P.: Effect of UV exposure on mechanical properties of POSS reinforced epoxy nanocomposites. In: 2014 Annual Conference on Experimental and Applied Mechanics (2014)

    Google Scholar 

  5. Zhang, J., Michalenko, M.M., Kuhl, E., Ovaert, T.C.: Characterization of indentation response and stiffness reduction of bone using a continuum damage model. J. Mech. Behav. Biomed. Mater. 3(2), 189–202 (2010)

    Article  Google Scholar 

  6. Engels, P., Begau, C., Gupta, S., Schmaling, B., Ma, A., Hartmaier, A.: Multiscale modeling of nanoindentation: from atomistic to continuum models. Nanomechanical Analysis of High Performance Materials, pp. 285–322. Springer, Netherlands (2013)

    Google Scholar 

  7. Doerner, M., Nix, W.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(04), 601–609 (1986)

    Article  Google Scholar 

  8. Oliver, W., Pharr, G.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  Google Scholar 

  9. Li, X., Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48(1), 11–36 (2002)

    Article  Google Scholar 

  10. Fischer-Cripps, A.: Nanoindentation. Springer, New York (2004)

    Book  Google Scholar 

  11. Ngan, A.: Nanomechanical characterization of soft materials. In: Tiwari, A. (ed.) Nanomechanical Analysis of High Performance Materials. Springer, Netherlands (2014)

    Google Scholar 

  12. Marin, J., Pao, Y.: An analytical theory of the creep deformation of materials. J. Appl. Mech. 20, 245–252 (1953)

    MathSciNet  MATH  Google Scholar 

  13. Richter, H., Misawa, E., Lucca, D., Lu, H.: Modeling nonlinear behavior in a piezoelectric actuator. Precis. Eng. 25(2), 128–137 (2001)

    Article  Google Scholar 

  14. Shames, I., Cozzarelli, F.: Elastic and Inelastic Stress Analysis. Taylor and Francis, Washington (1997)

    MATH  Google Scholar 

  15. Kucuk, Y.: Simulation of non-linear viscoelastic behavior of cross-linked mesoporous silica aerogels by depth-sensing indentation. Indian J. Eng. Mater. Sci. 19(4), 260–268 (2012)

    MathSciNet  Google Scholar 

  16. Kucuk, Y., Mollamahmutoglu, C., Wang, Y., Lu, H.: nonlinearly viscoelastic nanoindentation of PMMA under a spherical tip. Exp. Mech. 53(5), 731–742 (2012)

    Google Scholar 

  17. Hamim, S.U., Singh, R.P.: Taguchi-based design of experiments in training POD-RBF surrogate model for inverse material modeling using nanoindentation. Inverse Prob. Sci. Eng. (2016). doi:0.1080/17415977.2016.1161036

    Google Scholar 

  18. Magnenet, V., Giraud, A., Homand, F.: Parameter sensitivity analysis for a Drücker–Prager model following from numerical simulations of indentation tests. Comput. Mater. Sci. 44(2), 385–391 (2008)

    Article  Google Scholar 

  19. Ma, Y., Zhang, Y., Yu, H.-F., Zhang, X.-Y., Shu, X.-F., Tang, B.: Plastic characterization of metals by combining nanoindentation test and finite element simulation. Trans. Nonferrous Metals Soc. China 23(8), 2368–2373 (2013)

    Article  Google Scholar 

  20. Clément, P., Meille, S., Chevalier, J., Olagnon, C.: Mechanical characterization of highly porous inorganic solids materials by instrumented micro-indentation. Acta Mater. 61(18), 6649–6660 (2013)

    Article  Google Scholar 

  21. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000)

    Google Scholar 

  22. Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its applications - Part I: theory. J. Sound Vib. 252(3), 527–544 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ly, H., Tran, H.: Modeling and control of physical processes using proper orthogonal decomposition. Math. Comput. Model. 33(1–3), 223–236 (2001)

    Article  MATH  Google Scholar 

  24. Buljak, V.: Inverse Analyses with Model Reduction. Computational Fluid and Solid Mechanics. Springer, Berlin/Heidelberg (2012)

    Book  MATH  Google Scholar 

  25. Rogers, C., Kassab, A., Divo, E., Ostrowski, Z., Bialecki, R.: An inverse pod-rbf network approach to parameter estimation in mechanics. Inverse Prob. Sci. Eng. 20, 749–767 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge that this work is funded in part or fully by a grant through the Oklahoma Nanotechnology Applications Project (ONAP) (Grant no. O9-20) and NASA Experimental Program to Stimulate Competitive Research (EPSCOR) (Grant no. NNXO9AP68A).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Hamim, S.U., Singh, R.P. (2017). Parameter Identification of Nonlinear Viscoelastic Material Model Using Finite Element-Based Inverse Analysis. In: Quinn, S., Balandraud, X. (eds) Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-42255-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42255-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42254-1

  • Online ISBN: 978-3-319-42255-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics