Skip to main content

Imaging in Neurology Research II: Exploring Plasticity and Cognitive Networks by In Vivo MRI

  • Chapter
  • First Online:
Small Animal Imaging

Abstract

The aim of this chapter is to introduce several models of neuroplasticity and to illustrate how basic neuroplastic events including learning and cognition can be unraveled with different in vivo magnetic resonance imaging (MRI) tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

AIM-MRI:

Activity-induced manganese-enhanced magnetic resonance imaging

ASL:

Arterial spin labeling

BBB:

Blood-brain barrier

BDNF:

Brain-derived neurotrophic factor

BOLD:

Blood-oxygen-level dependent

CA 1/2/3:

Cornu ammonis part 1/2/3

CBF:

Cerebral blood flow

CBV:

Cerebral blood volume

Cho:

Choline

CMRO2 :

Cerebral metabolic rate of oxygen

CNS:

Central nervous system

Cr:

Creatine

CT:

Computed tomography

DCM:

Dynamic causal modeling

DTI:

Diffusion tensor imaging

EEG:

Electroencephalography

EPI:

Echo planar imaging

FA:

Fractional anisotropy

FID:

Free induction decay

fMRI:

Functional magnetic resonance imaging

GABA:

Gamma-aminobutyric acid

Gln:

Glutamine

Glu:

Glutamate

GRASE:

Gradient and spin echo

HARDI:

High angular resolution diffusion imaging

HRF:

Hemodynamic response function

ICA:

Independent component analysis

Lac:

Lactate

LFF:

Low-frequency fluctuations

LTD:

Long-term depression

LTP:

Long-term potentiation

MD:

Mean diffusivity

ME:

Monocular enucleation

MEG:

Magnetoencephalography

MEMRI:

Manganese-enhanced magnetic resonance imaging

MPIO:

Micron-sized paramagnetic iron oxide (particle)

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

MTC:

Magnetization transfer contrast

NAA:

N-Acetylaspartate

NIRS:

Near-infrared spectroscopy

Otx2:

Orthodenticle homeobox 2 gene

PCr:

Phosphocreatine

PET:

Positron emission tomography

phMRI:

Pharmacological magnetic resonance imaging

PRESS:

Point-resolved spectroscopy

RF:

Radio frequency

ROI:

Region of interest

rsfMRI:

Resting state functional magnetic resonance imaging

SNR:

Signal-to-noise ratio

STEAM:

Stimulated echo acquisition mode

tCr:

Total creatine

TE:

Echo time

TI:

Inversion time

TR:

Repetition time

VBM:

Voxel-based morphometry

λ1 λ2, λ3:

Three eigenvalues

References

  • Abe O, et al. Voxel-based analysis of the diffusion tensor. Neuroradiology. 2010;52(8):699–710.

    Article  PubMed  Google Scholar 

  • Albrecht J, et al. Roles of glutamine in neurotransmission. Neuron Glia Biol. 2010;6(4):263–76.

    Article  PubMed  Google Scholar 

  • Alonso-Ortiz E, Levesque IR, Pike GB. MRI-based myelin water imaging: a technical review. Magn Reson Med. 2015;73:70–81.p. n/a-n/a.

    Article  CAS  PubMed  Google Scholar 

  • Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124(3):319–35.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Salvado E, et al. Functional MRI of long-term potentiation: imaging network plasticity. Philos Trans R Soc Lond B Biol Sci. 2014;369(1633):20130152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amaro Jr E, Barker GJ. Study design in fMRI: basic principles. Brain Cogn. 2006;60(3):220–32.

    Article  PubMed  Google Scholar 

  • Anthony H, Karel S. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009;10(9):647–58.

    Article  CAS  Google Scholar 

  • Aschner M. The transport of manganese across the blood–brain barrier. Neurotoxicology. 2006;27(3):311–4.

    Article  CAS  PubMed  Google Scholar 

  • Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage. 2000;11(6):805–21.

    Article  CAS  PubMed  Google Scholar 

  • Avelino MA, et al. Inherited manganism: the “cock-walk” gait and typical neuroimaging features. J Neurol Sci. 2014;341(1–2):150–2.

    Article  PubMed  Google Scholar 

  • Bandettini PA. Twenty years of functional MRI: the science and the stories. Neuroimage. 2012;62(2):575–88.

    Article  PubMed  Google Scholar 

  • Barnea A, Nottebohm F. Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc Natl Acad Sci. 1994;91(23):11217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnea A, Nottebohm F. Recruitment and replacement of hippocampal neurons in young and adult chickadees: an addition to the theory of hippocampal learning. Proc Natl Acad Sci. 1996;93(2):714–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes SJ, Finnerty GT. Sensory experience and cortical rewiring. Neuroscientist. 2010;16(2):186–98.

    Article  PubMed  Google Scholar 

  • Bartha R, et al. High field (1)H MRS of the hippocampus after donepezil treatment in Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(3):786–93.

    Article  CAS  PubMed  Google Scholar 

  • Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumans V. Environmental enrichment for laboratory rodents and rabbits: requirements of rodents, rabbits, and research. ILAR J. 2005;46(2):162–70.

    Article  CAS  PubMed  Google Scholar 

  • Bavelier D, Hirshorn E. I see where you’re hearing: how cross-modal plasticity may exploit homologous brain structures. Nat Neurosci. 2010;13(11):1309–11.

    Article  CAS  PubMed  Google Scholar 

  • Bazarek S, Peterson DA. Prospects for engineering neurons from local neocortical cell populations as cell-mediated therapy for neurological disorders. J Comp Neurol. 2014;522:2857–76: p. n/a-n/a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 2002;15(7–8):435–55.

    Article  PubMed  Google Scholar 

  • Beckmann CF, et al. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci. 2005;360(1457):1001–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development. Curr Opin Neurobiol. 2000;10(1):138–45.

    Article  CAS  PubMed  Google Scholar 

  • Berger JM, Rohn TT, Oxford JT. Autism as the early closure of a neuroplastic critical period normally seen in adolescence. Biol Syst Open Access. 2013;1. http://www.omicsgroup.org/journals/autism-as-the-early-closure-of-a-neuroplastic-critical-period-normally-seen-in-adolescence-2329-6577-1000118.php?aid=43859

  • Biedermann S, et al. In vivo voxel based morphometry: detection of increased hippocampal volume and decreased glutamate levels in exercising mice. Neuroimage. 2012;61(4):1206–12.

    Article  PubMed  Google Scholar 

  • Birn RM, et al. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage. 2006;31(4):1536–48.

    Article  PubMed  Google Scholar 

  • Bissig D, Berkowitz BA. Manganese-enhanced MRI of layer-specific activity in the visual cortex from awake and free-moving rats. Neuroimage. 2009;44(3):627–35.

    Article  PubMed  Google Scholar 

  • Biswal B, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.

    Article  CAS  PubMed  Google Scholar 

  • Bitanihirwe BKY, Woo T-UW. Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neurosci Biobehav Rev. 2014;45:85–99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blumenfeld-Katzir T, et al. Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS One. 2011;6(6):e20678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bothwell JH, Griffin JL. An introduction to biological nuclear magnetic resonance spectroscopy. Biol Rev Camb Philos Soc. 2011;86(2):493–510.

    Article  PubMed  Google Scholar 

  • Boumans T, et al. Neural representation of spectral and temporal features of song in the auditory forebrain of zebra finches as revealed by functional MRI. Eur J Neurosci. 2007;26(9):2613–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boumans T, et al. Functional magnetic resonance imaging in zebra finch discerns the neural substrate involved in segregation of conspecific song from background noise. J Neurophysiol. 2008;99(2):931–8.

    Article  PubMed  Google Scholar 

  • Boyke J, et al. Training-induced brain structure changes in the elderly. J Neurosci. 2008;28(28):7031–5.

    Article  CAS  PubMed  Google Scholar 

  • Brainard MS, Doupe AJ. Translating birdsong: songbirds as a model for basic and applied medical research. Annu Rev Neurosci. 2013;36(1):489–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown J, et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci. 2003;17(10):2042–6.

    Article  PubMed  Google Scholar 

  • Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.

    Article  CAS  PubMed  Google Scholar 

  • Busatto GF, Diniz BS, Zanetti MV. Voxel-based morphometry in Alzheimer’s disease. Expert Rev Neurother. 2008;8(11):1691–702.

    Article  PubMed  Google Scholar 

  • Butz M, Wörgötter F, van Ooyen A. Activity-dependent structural plasticity. Brain Res Rev. 2009;60(2):287–305.

    Article  PubMed  Google Scholar 

  • Cai Y, et al. Use of high resolution 3D Diffusion tensor imaging to study brain white matter development in live neonatal rats. Front Psychiatry. 2011;2:54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calhoun VD, et al. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14(3):140–51.

    Article  CAS  PubMed  Google Scholar 

  • Campbell BCV, Macrae IM. Translational perspectives on perfusion–diffusion mismatch in ischemic stroke. Int J Stroke. 2015;10:153–62: p. n/a-n/a.

    Article  PubMed  Google Scholar 

  • Canals S, et al. Functional MRI evidence for LTP-induced neural network reorganization. Curr Biol. 2009;19(5):398–403.

    Article  CAS  PubMed  Google Scholar 

  • Carlén M, et al. Functional integration of adult-born neurons. Curr Biol. 2002;12(7):606–8.

    Article  PubMed  Google Scholar 

  • Chan KC, et al. In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging. Neuroimage. 2011;54(1):389–95.

    Article  PubMed  Google Scholar 

  • Chan KC, et al. In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging. Neuroimage. 2012;59(3):2274–83.

    Article  PubMed  Google Scholar 

  • Chang C, Glover GH. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage. 2009;47(4):1448–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Tenney J, Kulkarni P, King JA. Imaging unconditioned fear response with manganese-enhanced MRI (MEMRI). Neuroimage. 2007;37(1):221–9.

    Google Scholar 

  • Chen C-C, Bajnath A, Brumberg JC. The impact of development and sensory deprivation on dendritic protrusions in the mouse barrel cortex. Cereb Cortex. 2014;25:1638–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi IY, et al. In vivo NMR studies of neurodegenerative diseases in transgenic and rodent models. Neurochem Res. 2003;28(7):987–1001.

    Article  CAS  PubMed  Google Scholar 

  • Chow AM, et al. Metabolic changes in visual cortex of neonatal monocular enucleated rat: a proton magnetic resonance spectroscopy study. Int J Dev Neurosci. 2011;29(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  • Chuang K-H, Belluscio L, Koretsky AP. In vivo detection of individual glomeruli in the rodent olfactory bulb using manganese enhanced MRI. Neuroimage. 2010;49(2):1350–6.

    Article  PubMed  Google Scholar 

  • Chung MK, et al. A unified statistical approach to deformation-based morphometry. Neuroimage. 2001;14(3):595–606.

    Article  CAS  PubMed  Google Scholar 

  • Chung H-W, Chou M-C, Chen C-Y. Principles and limitations of computational algorithms in clinical diffusion tensor MR tractography. Am J Neuroradiol. 2011;32(1):3–13.

    PubMed  Google Scholar 

  • Coghlan S, et al. GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev. 2012;36(9):2044–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colonnese MT, et al. Development of hemodynamic responses and functional connectivity in rat somatosensory cortex. Nat Neurosci. 2008;11(1):72–9.

    Article  CAS  PubMed  Google Scholar 

  • Concha L. A macroscopic view of microstructure: using diffusion-weighted images to infer damage, repair, and plasticity of white matter. Neuroscience. 2014;276:14–28.

    Article  CAS  PubMed  Google Scholar 

  • Coquery N, et al. Intrahippocampal transplantation of mesenchymal stromal cells promotes neuroplasticity. Cytotherapy. 2012;14(9):1041–53.

    Article  CAS  PubMed  Google Scholar 

  • Couillard-Despres S, et al. In vivo monitoring of adult neurogenesis in health and disease. Front Neurosci. 2011;5:67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crawley AP, Henkelman RM. Errors in T2 estimation using multislice multiple-echo imaging. Magn Reson Med. 1987;4(1):34–47.

    Article  CAS  PubMed  Google Scholar 

  • Curlik DM, DiFeo G, Shors TJ. Preparing for adulthood: thousands upon thousands of new cells are born in the hippocampus during puberty and most survive with effortful learning. Front Neurosci. 2014;8:70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Damoiseaux JS, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 2006;103(37):13848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Graaf R. In vivo NMR spectroscopy. 2nd ed. England: John wiley and sons; 2007a.

    Google Scholar 

  • de Graaf RA. In vivo NMR spectroscopy: principles and techniques. 2nd ed. England: John wiley and sons; 2007b.

    Google Scholar 

  • De Groof G, Van der Linden A. Love songs, bird brains and diffusion tensor imaging. NMR Biomed. 2010;23(7):873–83.

    Article  PubMed  Google Scholar 

  • De Groof G, et al. Seasonal rewiring of the songbird brain: an in vivo MRI study. Eur J Neurosci. 2008;28(12):2475–85.

    Article  PubMed  Google Scholar 

  • De Groof G, et al. Structural changes between seasons in the songbird auditory forebrain. J Neurosci. 2009;29(43):13557–65.

    Article  PubMed  CAS  Google Scholar 

  • De Groof G, et al. Neural correlates of behavioural olfactory sensitivity changes seasonally in European starlings. PLoS One. 2010;5(12):e14337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Groof G, et al. Functional changes between seasons in the male songbird auditory forebrain. Front Behav Neurosci. 2013a;7:196.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Groof G, et al. Functional MRI and functional connectivity of the visual system of awake pigeons. Behav Brain Res. 2013b;239:43–50.

    Article  PubMed  Google Scholar 

  • Denk W, Svoboda K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron. 1997;18(3):351–7.

    Article  CAS  PubMed  Google Scholar 

  • Deoni SCL. Quantitative relaxometry of the brain. Top Magn Reson Imaging. 2010;21(2):101–13. doi:10.1097/RMR.0b013e31821e56d8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deoni SL. Magnetic resonance relaxation and quantitative measurement in the brain. In: Modo M, Bulte JWM, editors. Magnetic resonance neuroimaging. Humana Press; 2011. p. 65–108.

    Google Scholar 

  • Desai M, et al. Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol. 2011;105(3):1393–405.

    Article  CAS  PubMed  Google Scholar 

  • Detre JA, Wang J. Technical aspects and utility of fMRI using BOLD and ASL. Clin Neurophysiol. 2002;113(5):621–34.

    Article  PubMed  Google Scholar 

  • Di Salle F, et al. Exploring brain function with magnetic resonance imaging. Eur J Radiol. 1999;30(2):84–94.

    Article  PubMed  Google Scholar 

  • Dijkhuizen RM, et al. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci. 2003;23(2):510–7.

    CAS  PubMed  Google Scholar 

  • Dijkhuizen RM, et al. Functional MRI and diffusion tensor imaging of brain reorganization after experimental stroke. Transl Stroke Res. 2012;3(1):36–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimyan MA, Cohen LG. Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol. 2011;7(2):76–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding X-Q, et al. Normal brain maturation characterized with age-related T2 relaxation times: an attempt to develop a quantitative imaging measure for clinical use. Invest Radiol. 2004;39(12):740–6.

    Article  PubMed  Google Scholar 

  • Dobson AW, Erikson KM, Aschner M. Manganese neurotoxicity. Ann N Y Acad Sci. 2004;1012(1):115–28.

    Article  CAS  PubMed  Google Scholar 

  • Doupe AJ, Kuhl PK. Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci. 1999;22(1):567–631.

    Article  CAS  PubMed  Google Scholar 

  • Drost DJ, et al. Proton magnetic resonance spectroscopy in the brain: report of AAPM MR Task Group #9. Med Phys. 2002;29(9):2177–97.

    Article  CAS  PubMed  Google Scholar 

  • Dubois J, et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience. 2014;276:48–71.

    Article  CAS  PubMed  Google Scholar 

  • Dula AN, Gochberg DF, Does MD. Optimal echo spacing for multi-echo imaging measurements of Bi-exponential T2 relaxation. J Magn Reson. 2009;196(2):149–56.

    Article  CAS  PubMed  Google Scholar 

  • Einstein A. Investigations on the theory of the brownian movement. Ann der Physik. 1905.

    Google Scholar 

  • Endo T, et al. Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. Brain. 2007;130(Pt 11):2951–61.

    Article  PubMed  Google Scholar 

  • Erikson KM, Aschner M. Manganese neurotoxicity and glutamate-GABA interaction. Neurochem Int. 2003;43(4–5):475–80.

    Article  CAS  PubMed  Google Scholar 

  • Erikson KM, et al. Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol. 2005;19(3):415–21.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn A-M, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.

    Article  CAS  PubMed  Google Scholar 

  • Erzurumlu RS, Gaspar P. Development and critical period plasticity of the barrel cortex. Eur J Neurosci. 2012;35(10):1540–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fagiolini M, Jensen CL, Champagne FA. Epigenetic influences on brain development and plasticity. Curr Opin Neurobiol. 2009;19(2):207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg DA, Yacoub E. The rapid development of high speed, resolution and precision in fMRI. Neuroimage. 2012;62(2):720–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Felsenstein KM, et al. Regenerative medicine in Alzheimer’s disease. Transl Res. 2014;163(4):432–8.

    Article  PubMed  Google Scholar 

  • Ferguson KJ, et al. Magnetic resonance spectroscopy and cognitive function in healthy elderly men. Brain. 2002;125(Pt 12):2743–9.

    Article  PubMed  Google Scholar 

  • Fernandez F, Garner CC. Over-inhibition: a model for developmental intellectual disability. Trends Neurosci. 2007;30(10):497–503.

    Article  CAS  PubMed  Google Scholar 

  • Ferris CF, et al. Functional magnetic resonance imaging in conscious animals: a new tool in behavioural neuroscience research. J Neuroendocrinol. 2006;18(5):307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fledelius HC, et al. Human parallels to experimental myopia? A literature review on visual deprivation. Acta Ophthalmol. 2014;92:724–9: p. n/a-n/a.

    Article  PubMed  Google Scholar 

  • Focke NK, et al. Do manual and voxel-based morphometry measure the same? – A proof of concept study. Front Psychiatry. 2014;5:39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frangou S, Williams SC. Magnetic resonance spectroscopy in psychiatry: basic principles and applications. Br Med Bull. 1996;52(3):474–85.

    Article  CAS  PubMed  Google Scholar 

  • Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp. 2005;26(1):15–29.

    Article  PubMed  Google Scholar 

  • Frasnelli J, et al. Crossmodal plasticity in sensory loss. Prog Brain Res. 2011;191:233–49.

    Article  PubMed  Google Scholar 

  • Freeborough PA, Fox NC. Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. J Comput Assist Tomogr. 1998;22(5):838–43.

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003;19(4):1273–302.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs E, et al. Adult neuroplasticity: more than 40 years of research. Neural Plast. 2014;2014:10.

    Article  Google Scholar 

  • Gage FH, et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci. 1995;92(25):11879–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galinsky VL, Frank LR. Automated segmentation and shape characterization of volumetric data. Neuroimage. 2014;92:156–68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavin CE, Gunter KK, Gunter TE. Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochem J. 1990;266:329–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavrilescu M, et al. Functional connectivity estimation in fMRI data: influence of preprocessing and time course selection. Hum Brain Mapp. 2008;29(9):1040–52.

    Article  PubMed  Google Scholar 

  • Gervain J, et al. Valproate reopens critical-period learning of absolute pitch. Front Syst Neurosci. 2013;7:102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gheusi G, Lledo PM. Chapter 6 – adult neurogenesis in the olfactory system shapes odor memory and perception. In: Edi B, Donald AW, editors. Progress in brain research. Elsevier; 2014. p. 157–75.

    Google Scholar 

  • Goldman SA, Nottebohm F. Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci. 1983;80(8):2390–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golub Y, et al. Reduced hippocampus volume in the mouse model of Posttraumatic Stress Disorder. J Psychiatr Res. 2011;45(5):650–9.

    Article  PubMed  Google Scholar 

  • Gonen O, et al. Total brain N-acetylaspartate concentration in normal, age-grouped females: quantitation with non-echo proton NMR spectroscopy. Magn Reson Med. 1998;40(5):684–9.

    Article  CAS  PubMed  Google Scholar 

  • Gutman D, et al. Mapping of the mouse olfactory system with manganese-enhanced magnetic resonance imaging and diffusion tensor imaging. Brain Struct Funct. 2013;218(2):527–37.

    Article  PubMed  Google Scholar 

  • Hannan AJ. Review: environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathol Appl Neurobiol. 2014;40(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  • Hensch TK. Critical period regulation. Annu Rev Neurosci. 2004;27(1):549–79.

    Article  CAS  PubMed  Google Scholar 

  • Herring A, et al. Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Exp Neurol. 2009;216(1):184–92.

    Article  CAS  PubMed  Google Scholar 

  • Hiremath GK, Najm IM. Magnetic resonance spectroscopy in animal models of epilepsy. Epilepsia. 2007;48:47–55.

    Article  PubMed  Google Scholar 

  • Hofstetter S, et al. Short-term learning induces white matter plasticity in the fornix. J Neurosci. 2013;33(31):12844–50.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins WD, et al. Gray matter asymmetries in chimpanzees as revealed by voxel-based morphometry. Neuroimage. 2008;42(2):491–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hötting K, Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9, Part B):2243–57.

    Article  PubMed  Google Scholar 

  • Jaime FO, et al. Deafferentation-induced plasticity of visual callosal connections: predicting critical periods and analyzing cortical abnormalities using diffusion tensor imaging. Neural Plast. 2012;2012:250196.

    Google Scholar 

  • James JS, et al. fMRI paradigm designing and post-processing tools. Indian J Radiol Imaging. 2014;24(1):13–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jessen F, et al. Decrease of N-acetylaspartate in the MTL correlates with cognitive decline of AD patients. Neurology. 2001;57(5):930–2.

    Article  CAS  PubMed  Google Scholar 

  • Jon JB. Neurodevelopment: unlocking the brain. Nature. 2012;487(7405):24–6.

    Article  CAS  Google Scholar 

  • Jonckers E, et al. Functional connectivity fMRI of the rodent brain: comparison of functional connectivity networks in rat and mouse. PLoS One. 2011;6(4):e18876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonckers E, et al. Different anesthesia regimes modulate the functional connectivity outcome in mice. Magn Reson Med. 2014;72(4):1103–12.

    Article  CAS  PubMed  Google Scholar 

  • Jones DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study†. Magn Reson Med. 2004;51(4):807–15.

    Article  PubMed  Google Scholar 

  • Jones DK. Diffusion MRI: theory, methods, and applications. Oxford: Oxford University Press; 2010.

    Google Scholar 

  • Jones DK, Basser PJ. “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn Reson Med. 2004;52(5):979–93.

    Article  PubMed  Google Scholar 

  • Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage. 2013;73:239–54.

    Article  PubMed  Google Scholar 

  • Kalisch R, et al. Blood pressure changes induced by arterial blood withdrawal influence bold signal in anesthesized rats at 7 Tesla: implications for pharmacologic MRI. Neuroimage. 2001;14(4):891–8.

    Article  CAS  PubMed  Google Scholar 

  • Kara F, et al. In vivo measurement of transverse relaxation time in the mouse brain at 17.6 T. Magn Reson Med. 2013;70(4):985–93.

    Article  PubMed  Google Scholar 

  • Kelly C, et al. Characterizing variation in the functional connectome: promise and pitfalls. Trends Cogn Sci. 2012;16(3):181–8.

    Article  PubMed  Google Scholar 

  • Kent K, et al. CA3 NMDA receptors are required for experience-dependent shifts in hippocampal activity. Hippocampus. 2007;17(10):1003–11.

    Article  PubMed  Google Scholar 

  • Kharatishvili I, et al. Quantitative T2 mapping as a potential marker for the initial assessment of the severity of damage after traumatic brain injury in rat. Exp Neurol. 2009;217(1):154–64.

    Article  PubMed  Google Scholar 

  • Kharatishvili I, et al. MRI changes and complement activation correlate with epileptogenicity in a mouse model of temporal lobe epilepsy. Brain Struct Funct. 2014;219(2):683–706.

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, et al. Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR Biomed. 2013;26(8):949–62.

    Article  CAS  PubMed  Google Scholar 

  • King JA, et al. Procedure for minimizing stress for fMRI studies in conscious rats. J Neurosci Methods. 2005;148(2):154–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kral A. Auditory critical periods: a review from system’s perspective. Neuroscience. 2013;247:117–33.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan KR, et al. Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease. Am J Psychiatry. 2003;160(11):2003–11.

    Article  PubMed  Google Scholar 

  • Kwong KK, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992;89(12):5675–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahti KM, et al. Imaging brain activity in conscious animals using functional MRI. J Neurosci Methods. 1998;82(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  • Lamprecht R, LeDoux J. Structural plasticity and memory. Nat Rev Neurosci. 2004;5(1):45.

    Article  CAS  PubMed  Google Scholar 

  • Lau JC, et al. Longitudinal neuroanatomical changes determined by deformation-based morphometry in a mouse model of Alzheimer’s disease. Neuroimage. 2008;42(1):19–27.

    Article  PubMed  Google Scholar 

  • Le Bihan D, Delannoy J, Levin RL. Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology. 1989;171(3):853–7.

    Article  PubMed  Google Scholar 

  • Le Bihan D, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13(4):534–46.

    Article  PubMed  Google Scholar 

  • Lerch JP, et al. Automated deformation analysis in the YAC128 Huntington disease mouse model. Neuroimage. 2008;39(1):32–9.

    Article  PubMed  Google Scholar 

  • Lerch JP, et al. Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. Neuroimage. 2011;54(3):2086–95.

    Article  PubMed  Google Scholar 

  • Leuner B, Gould E, Shors TJ. Is there a link between adult neurogenesis and learning? Hippocampus. 2006;16(3):216–24.

    Article  PubMed  Google Scholar 

  • Levelt CN, Hübener M. Critical-period plasticity in the visual cortex. Annu Rev Neurosci. 2012;35(1):309–30.

    Article  CAS  PubMed  Google Scholar 

  • Li J, et al. A meta-analysis of voxel-based morphometry studies of white matter volume alterations in Alzheimer’s disease. Neurosci Biobehav Rev. 2012;36(2):757–63.

    Article  PubMed  Google Scholar 

  • Li R, et al. Cortical plasticity induced by different degrees of peripheral nerve injuries: a rat functional magnetic resonance imaging study under 9.4 Tesla. J Brachial Plex Peripher Nerve Inj. 2013;8(1):4.

    PubMed  PubMed Central  Google Scholar 

  • Liang Z, King J, Zhang N. Uncovering intrinsic connectional architecture of functional networks in awake rat brain. J Neurosci. 2011;31(10):3776–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist MA. The statistical analysis of fMRI data. Stat Sci. 2008;23(4):439–64.

    Article  Google Scholar 

  • Lindquist MA, et al. Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling. Neuroimage. 2009;45(1):S187–98.

    Article  PubMed  Google Scholar 

  • Little DM, Foxely S, Lazarov O. A preliminary study targeting neuronal pathways activated following environmental enrichment by resting state functional magnetic resonance imaging. J Alzheimers Dis. 2012;32(1):101–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–78.

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Pfeuffer J. On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging. 2004;22(10):1517–31.

    Article  PubMed  Google Scholar 

  • Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol. 2004;66(1):735–69.

    Article  CAS  PubMed  Google Scholar 

  • Logothetis N, et al. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–7.

    Article  CAS  PubMed  Google Scholar 

  • Longwei X. Clinical application of diffusion tensor magnetic resonance imaging in skeletal muscle. Muscles Ligaments Tendons J. 2012;2(1):19–24.

    PubMed  PubMed Central  Google Scholar 

  • Lövdén M, et al. Structural brain plasticity in adult learning and development. Neurosci Biobehav Rev. 2013;37(9, Part B):2296–310.

    Article  PubMed  Google Scholar 

  • Lowe MJ, et al. Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage. 2000;12(5):582–7.

    Article  CAS  PubMed  Google Scholar 

  • Lu H, et al. Rat brains also have a default mode network. Proc Natl Acad Sci U S A. 2012;109(10):3979–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüscher C. Drug-evoked synaptic plasticity causing addictive behavior. J Neurosci. 2013;33(45):17641–6.

    Article  PubMed  CAS  Google Scholar 

  • Ma DKB, Michael A, Ming G-l, Song H. Adult neural stem cells in the mammalian central nervous system. Cell Res. 2009;19(6):672–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, et al. Magnetic resonance fingerprinting. Nature. 2013;495(7440):187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKay A, et al. In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med. 1994;31(6):673–7.

    Article  CAS  PubMed  Google Scholar 

  • MacKay A, et al. Insights into brain microstructure from the T2 distribution. Magn Reson Imaging. 2006;24(4):515–25.

    Article  PubMed  Google Scholar 

  • Maddock RJ, et al. Vigorous exercise increases brain lactate and Glx (glutamate + glutamine): a dynamic 1H-MRS study. Neuroimage. 2011;57(4):1324–30.

    Article  CAS  PubMed  Google Scholar 

  • Maguire EA, et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci. 2000;97(8):4398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majewska AK. Imaging visual cortical structure and function in vivo. J Glaucoma. 2013;22:S21–3. doi:10.1097/IJG.0b013e3182934a30.

    Article  PubMed  Google Scholar 

  • Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):5–21.

    Article  CAS  PubMed  Google Scholar 

  • Malonek D, et al. Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc Natl Acad Sci. 1997;94(26):14826–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangin JF, et al. Toward global tractography. Neuroimage. 2013;80:290–6.

    Article  PubMed  Google Scholar 

  • Margulies DS, et al. Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. MAGMA. 2010;23(5–6):289–307.

    Article  PubMed  Google Scholar 

  • Marino S, et al. 1H-MR spectroscopy in traumatic brain injury. Neurocrit Care. 2011;14(1):127–33.

    Article  PubMed  Google Scholar 

  • Masamoto K, Kanno I. Anesthesia and the quantitative evaluation of neurovascular coupling. J Cereb Blood Flow Metab. 2012;32(7):1233–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May A. Experience-dependent structural plasticity in the adult human brain. Trends Cogn Sci. 2011;15(10):475–82.

    Article  PubMed  Google Scholar 

  • Mechelli A, et al. Voxel-based morphometry of the human brain: methods and applications. Curr Med Imaging Rev. 2005:1(2);105–13.

    Google Scholar 

  • Miller MJ, et al. fMRI of the conscious rabbit during unilateral classical eyeblink conditioning reveals bilateral cerebellar activation. J Neurosci. 2003;23(37):11753–8.

    CAS  PubMed  Google Scholar 

  • Mori S, Tournier J. Introduction to diffusion tensor imaging 2e: and higher order models. The Boulevard, Langford Lane, Kidlington, Oxford, UK and USA: Elsevier Science & Technology Books; 2013.

    Google Scholar 

  • Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51(5):527–39.

    Article  CAS  PubMed  Google Scholar 

  • Muller D, et al. LTP, memory and structural plasticity. Curr Mol Med. 2002;2:605–11.

    Article  CAS  PubMed  Google Scholar 

  • Munoz Maniega S, et al. Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging study. Neurology. 2008;71(24):1993–9.

    Article  CAS  PubMed  Google Scholar 

  • Nagy C, Turecki G. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes. Epigenomics. 2012;4(4):445–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahmani M, Turrigiano GG. Adult cortical plasticity following injury: recapitulation of critical period mechanisms? Neuroscience. 2014;283:4–16.

    Article  CAS  PubMed  Google Scholar 

  • Nairismägi J, et al. Manganese-enhanced magnetic resonance imaging of mossy fiber plasticity in vivo. Neuroimage. 2006;30(1):130–5.

    Article  PubMed  Google Scholar 

  • Nieman BJ, et al. In vivo MRI of neural cell migration dynamics in the mouse brain. Neuroimage. 2010;50(2):456–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nottebohm F. Neuronal replacement in adulthood. Ann N Y Acad Sci. 1985;457(1):143–61.

    Article  CAS  PubMed  Google Scholar 

  • Oboti L, Peretto P. How neurogenesis finds its place in a hardwired sensory system. Front Neurosci. 2014;8:102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogawa S, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 1992;89(13):5951–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson AK, et al. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus. 2006;16(3):250–60.

    Article  CAS  PubMed  Google Scholar 

  • Overman JJ, Carmichael ST. Plasticity in the injured brain: more than molecules matter. Neuroscientist. 2014;20(1):15–28.

    Article  PubMed  CAS  Google Scholar 

  • Oz G, et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology. 2014;270(3):658–79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagani E, et al. Basic concepts of advanced MRI techniques. Neurol Sci. 2008;29 Suppl 3:290–5.

    Article  PubMed  Google Scholar 

  • Park CH, et al. Transcranial direct current stimulation increases resting state interhemispheric connectivity. Neurosci Lett. 2013;539:7–10.

    Article  CAS  PubMed  Google Scholar 

  • Paus T, et al. Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull. 2001;54(3):255–66.

    Article  CAS  PubMed  Google Scholar 

  • Pautler RG. In vivo, trans-synaptic tract-tracing utilizing manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed. 2004;17(8):595–601.

    Article  CAS  PubMed  Google Scholar 

  • Pautler RG, Silva AC, Koretsky AP. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med. 1998;40(5):740–8.

    Article  CAS  PubMed  Google Scholar 

  • Pawela CP, et al. Interhemispheric neuroplasticity following limb deafferentation detected by resting-state functional connectivity magnetic resonance imaging (fcMRI) and functional magnetic resonance imaging (fMRI). Neuroimage. 2010;49(3):2467–78.

    Article  PubMed  Google Scholar 

  • Pell GS, et al. Voxel-based relaxometry: a new approach for analysis of T2 relaxometry changes in epilepsy. Neuroimage. 2004;21(2):707–13.

    Article  PubMed  Google Scholar 

  • Pelled G. MRI of neuronal plasticity in rodent models. Methods Mol Biol. 2011;711:567–78.

    Article  CAS  PubMed  Google Scholar 

  • Pelled G, Bergman H, Goelman G. Bilateral overactivation of the sensorimotor cortex in the unilateral rodent model of Parkinson’s disease – a functional magnetic resonance imaging study. Eur J Neurosci. 2002;15(2):389–94.

    Article  PubMed  Google Scholar 

  • Pelled G, et al. Functional MRI detection of bilateral cortical reorganization in the rodent brain following peripheral nerve deafferentation. Neuroimage. 2007;37(1):262–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peltier SJ, et al. Functional connectivity changes with concentration of sevoflurane anesthesia. Neuroreport. 2005;16(3):285–8.

    Article  CAS  PubMed  Google Scholar 

  • Petersen-Felix S, Curatolo M. Neuroplasticity--an important factor in acute and chronic pain. Swiss Med Wkly. 2002;132:273–8.

    PubMed  Google Scholar 

  • Poirier C, et al. Own-song recognition in the songbird auditory pathway: selectivity and lateralization. J Neurosci. 2009;29(7):2252–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole D, Oitzl M, van der Weerd L. MRI in animal models of psychiatric disorders. In: Schröder L, Faber C, editors. In vivo NMR Imaging. Humana Press; 2011. p. 309–35.

    Google Scholar 

  • Ptito M, et al. Crossmodal recruitment of the ventral visual stream in congenital blindness. Neural Plast. 2012;2012:304045.

    PubMed  PubMed Central  Google Scholar 

  • Roebroeck A, Formisano E, Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage. 2005;25(1):230–42.

    Article  PubMed  Google Scholar 

  • Roose D, et al. Multimodal imaging of micron-sized iron oxide particles following in vitro and in vivo uptake by stem cells: down to the nanometer scale. Contrast Media Mol Imaging. 2014;9:400–8: p. n/a-n/a.

    Article  CAS  PubMed  Google Scholar 

  • Roth J, Ponzoni S, Aschner M. Manganese homeostasis and transport. In: Banci L, editor. Metallomics and the cell. The Netherlands: Springer Dordrecht; 2013. p. 169–201.

    Google Scholar 

  • Rueger MA, et al. Noninvasive imaging of endogenous neural stem cell mobilization in vivo using positron emission tomography. J Neurosci. 2010;30(18):6454–60.

    Article  CAS  PubMed  Google Scholar 

  • Sagi Y, et al. Learning in the fast lane: new insights into neuroplasticity. Neuron. 2012;73(6):1195–203.

    Article  CAS  PubMed  Google Scholar 

  • Sale A, et al. GABAergic inhibition in visual cortical plasticity. Front Cell Neurosci. 2010;4:10.

    PubMed  PubMed Central  Google Scholar 

  • Sampaio-Baptista C, et al. Gray matter volume is associated with rate of subsequent skill learning after a long term training intervention. Neuroimage. 2014;96:158–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Santamaria AB. Manganese exposure, essentiality & toxicity. Indian J Med Res. 2008;128(4):16.

    Google Scholar 

  • Särkämö T, et al. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study. Front Hum Neurosci. 2014;8:245.

    PubMed  PubMed Central  Google Scholar 

  • Sawiak SJ, Picq J-L, Dhenain M. Voxel-based morphometry analyses of in-vivo MRI in the aging mouse lemur primate. Front Aging Neurosci. 2014;6:82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schroeter A, et al. Specificity of stimulus-evoked fMRI responses in the mouse: the influence of systemic physiological changes associated with innocuous stimulation under four different anesthetics. Neuroimage. 2014;94:372–84.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro EM, et al. Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. Neuroimage. 2006;32(3):1150–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrager RI, Weiss GH, Spencer RGS. Optimal time spacings for T2 measurements: monoexponential and biexponential systems. NMR Biomed. 1998;11(6):297–305.

    Article  CAS  PubMed  Google Scholar 

  • Sierra A, et al. Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis. Neural Plast. 2014;2014:15.

    Article  CAS  Google Scholar 

  • Silva AC, et al. Detection of cortical laminar architecture using manganese-enhanced MRI. J Neurosci Methods. 2008;167(2):246–57.

    Article  CAS  PubMed  Google Scholar 

  • Sloot WN, Gramsbergen J-BP. Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res. 1994;657(1–2):124–32.

    Article  CAS  PubMed  Google Scholar 

  • Small SA, et al. Circuit mechanisms underlying memory encoding and retrieval in the long axis of the hippocampal formation. Nat Neurosci. 2001;4(4):442–9.

    Article  CAS  PubMed  Google Scholar 

  • Smirnakis SM, et al. Spatial specificity of BOLD versus cerebral blood volume fMRI for mapping cortical organization. J Cereb Blood Flow Metab. 2007;27(6):1248–61.

    Article  PubMed  Google Scholar 

  • Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol. 2009;64(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  • Soares J, et al. A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci. 2013;7:31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stagg CJ. Magnetic resonance spectroscopy as a tool to study the role of GABA in motor-cortical plasticity. Neuroimage. 2014;86:19–27.

    Article  CAS  PubMed  Google Scholar 

  • Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42(1):288–92.

    Article  CAS  Google Scholar 

  • Stepanichev M, et al. Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. Biomed Res Int. 2014;2014:20.

    Article  Google Scholar 

  • Stuchlik A. Dynamic learning and memory, synaptic plasticity and neurogenesis: an update. Front Behav Neurosci. 2014;8:106.

    PubMed  PubMed Central  Google Scholar 

  • Sumiyoshi A, et al. Regional gray matter volume increases following 7 days of voluntary wheel running exercise: a longitudinal VBM study in rats. Neuroimage. 2014;98:82–90.

    Article  PubMed  Google Scholar 

  • Svirsky MA, Teoh SW, Neuburger H. Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation. Audiol Neurootol. 2004;9(4):224–33.

    Article  PubMed  Google Scholar 

  • Sztriha LK, et al. Monitoring brain repair in stroke using advanced magnetic resonance imaging. Stroke. 2012;43(11):3124–31.

    Article  PubMed  Google Scholar 

  • Takeda A, et al. Manganese transport in the neural circuit of rat CNS. Brain Res Bull. 1998;45(2):149–52.

    Article  CAS  PubMed  Google Scholar 

  • Takesian AE, Hensch TK. Chapter 1 – balancing plasticity/stability across brain development. In: Michael M. Merzenich MN, Thomas MVV, editors. Progress in brain research. Elsevier; 2013. p. 3–34.

    Google Scholar 

  • Takeuchi N, Izumi S. Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat. 2013;2013:128641.

    PubMed  PubMed Central  Google Scholar 

  • Tapp PD, et al. Application of an automated voxel-based morphometry technique to assess regional gray and white matter brain atrophy in a canine model of aging. Neuroimage. 2006;29(1):234–44.

    Article  PubMed  Google Scholar 

  • Tjälve H, et al. Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats *. Pharmacol Toxicol. 1996;79(6):347–56.

    Article  PubMed  Google Scholar 

  • Tramontin AD, Brenowitz EA. Seasonal plasticity in the adult brain. Trends Neurosci. 2000;23(6):251–8.

    Article  CAS  PubMed  Google Scholar 

  • Tropea D, Van Wart A, Sur M. Molecular mechanisms of experience-dependent plasticity in visual cortex. Philos Trans R Soc B Biol Sci. 2009;364(1515):341–55.

    Article  Google Scholar 

  • Tsurugizawa T, et al. Effects of isoflurane and alpha-chloralose anesthesia on BOLD fMRI responses to ingested L-glutamate in rats. Neuroscience. 2010;165(1):244–51.

    Article  CAS  PubMed  Google Scholar 

  • Tucciarone J, et al. Layer specific tracing of corticocortical and thalamocortical connectivity in the rodent using manganese enhanced MRI. Neuroimage. 2009;44(3):923–31.

    Article  PubMed  Google Scholar 

  • Tuch DS. Q-ball imaging. Magn Reson Med. 2004;52(6):1358–72.

    Article  PubMed  Google Scholar 

  • Tuch DS, et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48(4):577–82.

    Article  PubMed  Google Scholar 

  • Uddin LQ, Supekar K, Menon V. Typical and atypical development of functional human brain networks: insights from resting-state FMRI. Front Syst Neurosci. 2010;4:21.

    PubMed  PubMed Central  Google Scholar 

  • Uludağ K, Roebroeck A. General overview on the merits of multimodal neuroimaging data fusion. Neuroimage. 2014;102(Pt 1):3–10.

    Article  PubMed  Google Scholar 

  • van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20(8):519–34.

    Article  PubMed  CAS  Google Scholar 

  • van der Kant A, et al. Representation of early sensory experience in the adult auditory midbrain: implications for vocal learning. PLoS One. 2013;8(4):e61764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van der Linden A, et al. Non invasive in vivo anatomical studies of the oscine brain by high resolution MRI microscopy. J Neurosci Methods. 1998;81(1–2):45–52.

    Article  PubMed  Google Scholar 

  • Van der Linden A, et al. In vivo manganese-enhanced magnetic resonance imaging reveals connections and functional properties of the songbird vocal control system. Neuroscience. 2002;112(2):467–74.

    Article  PubMed  Google Scholar 

  • Van der Linden A, et al. Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to image brain plasticity in song birds. NMR Biomed. 2004;17(8):602–12.

    Article  PubMed  CAS  Google Scholar 

  • Van der Linden A, et al. MRI in small brains displaying extensive plasticity. Trends Neurosci. 2009;32(5):257–66.

    Article  PubMed  CAS  Google Scholar 

  • van der Zijden JP, et al. 1H/13C MR spectroscopic imaging of regionally specific metabolic alterations after experimental stroke. Brain. 2008;131(Pt 8):2209–19.

    Article  PubMed  Google Scholar 

  • van Meer MP, et al. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci. 2010;30(11):3964–72.

    Article  PubMed  CAS  Google Scholar 

  • Van Meir V, et al. In vivo MR imaging of the seasonal volumetric and functional plasticity of song control nuclei in relation to song output in a female songbird. Neuroimage. 2006;31(3):981–92.

    Article  PubMed  Google Scholar 

  • Van Ruijssevelt L, et al. Current state-of-the-art of auditory functional MRI (fMRI) on zebra finches: technique and scientific achievements. J Physiol Paris. 2013;107(3):156–69.

    Article  PubMed  Google Scholar 

  • Villasana LE, Westbrook GL, Schnell E. Neurologic impairment following closed head injury predicts post-traumatic neurogenesis. Exp Neurol. 2014;261:156–62.

    Article  CAS  PubMed  Google Scholar 

  • Vivo L, et al. Extracellular matrix inhibits structural and functional plasticity of dendritic spines in the adult visual cortex. Nat Commun. 2013;4:1484.

    Article  PubMed  CAS  Google Scholar 

  • Voss MW, et al. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci. 2013;17(10):525–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vreys R, et al. MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain: validation of various MPIO labeling strategies. Neuroimage. 2010;49(3):2094–103.

    Article  PubMed  Google Scholar 

  • Webb PG, et al. Automated single-voxel proton MRS: technical development and multisite verification. Magn Reson Med. 1994;31(4):365–73.

    Article  CAS  PubMed  Google Scholar 

  • Weissenbacher A, et al. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage. 2009;47(4):1408–16.

    Article  PubMed  Google Scholar 

  • Weng J-C, et al. Functional mapping of rat barrel activation following whisker stimulation using activity-induced manganese-dependent contrast. Neuroimage. 2007;36(4):1179–88.

    Article  PubMed  Google Scholar 

  • Whitwell JL. Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci. 2009;29(31):9661–4.

    Article  CAS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965a;28(6):1029–40.

    CAS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH. Extent of recovery from the effects of visual deprivation in kittens. J Neurophysiol. 1965b;28(6):1060–72.

    CAS  PubMed  Google Scholar 

  • Williams KA, et al. Comparison of alpha-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat. Magn Reson Imaging. 2010;28(7):995–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winner B, et al. Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci. 2002;16(9):1681–9.

    Article  PubMed  Google Scholar 

  • Wise RG, et al. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage. 2004;21(4):1652–64.

    Article  PubMed  Google Scholar 

  • Wu L, et al. Metabolic changes in the visual cortex of binocular blindness macaque monkeys: a proton magnetic resonance spectroscopy study. PLoS One. 2013;8(11):e80073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, et al. In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat Neurosci. 2005;8(7):961–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, et al. 3D mapping of somatotopic reorganization with small animal functional MRI. Neuroimage. 2010;49(2):1667–76.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Belgian Science Policy (Belspo, PLASTOSCINE P7/17), the Research Foundation – Flanders (FWO, G044311N; G.0302.13) – and a grant by the Hercules Foundation (AUHA0012) to AVdL. GDG (postdoc), FK (postdoc), and LVR (PhD) are supported by FWO fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Van der Linden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hamaide, J., Van Ruijssevelt, L., Kara, F., De Groof, G., Van der Linden, A. (2017). Imaging in Neurology Research II: Exploring Plasticity and Cognitive Networks by In Vivo MRI. In: Kiessling, F., Pichler, B., Hauff, P. (eds) Small Animal Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42202-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42202-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42200-8

  • Online ISBN: 978-3-319-42202-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics