Skip to main content

X-Ray and X-Ray-CT

  • Chapter
  • First Online:
Small Animal Imaging

Abstract

Since their discovery in 1895, x-rays have been widely used for imaging humans. Recently they have also gained on importance in small-animal imaging (SAI). Most techniques known from clinical medicine, including single- and dual-energy x-ray imaging, have been successfully ported to SAI and are the subject of this chapter. As trivial as it is, simple x-ray examinations may bring diagnostically valuable information in a variety of applications. Unenhanced radiography reveals skeletal anatomy, contrast-enhanced imaging allows improved visualization of the vasculature and strongly vascularized areas, and dedicated methods such as bone densitometry deliver quantitative information. In analogy to clinical x-ray imaging, we will separately describe standard two-dimensional (2D) projection imaging and the more advanced three-dimensional (3D) computed tomography (CT) imaging techniques. Also in analogy to clinical applications, CT is considered to be of significantly higher importance as it provides more information and possibilities than conventional 2D approaches. It will therefore be covered in much more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

X-Ray and X-Ray-CT

  • Almajdub M, Magnier L, Juillard L, Janier M. Kidney volume quantification using contrast-enhanced in vivo X-ray micro-CT in mice. Contrast Media Mol Imaging. 2008;3(3):120–6.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez RE, Macovski A. Energy-selective reconstructions in x-ray computerized tomography. Phys Med Biol. 1976;21(5):733–44.

    Article  CAS  PubMed  Google Scholar 

  • Badea CT, Hedlund LW, Lin MD, Boslego Mackel JF, Johnson GA. Tumor imaging in small animals with a combined micro-CT/micro-DSA system using iodinated conventional and blood pool contrast agents. Contrast Media Mol Imaging. 2006;1(4):153–64.

    Article  CAS  PubMed  Google Scholar 

  • Badea CT, Drangova M, Holdsworth DW, Johnson GA. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol. 2008;53(19):R19–50.

    Article  Google Scholar 

  • Bartling SH, Stiller W, Semmler W, Kiessling F. Small animal computed tomography imaging. Curr Med Imaging Rev. 2007;3:45–59.

    Article  Google Scholar 

  • Boone J, Velazquez O, Cherry SR. Small-animal X-ray dose from micro-CT. Mol Imaging. 2004;3(3):149–58.

    Article  PubMed  Google Scholar 

  • Deak P, van Straten M, Shrimpton PC, Zankl M, Kalender WA. Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. Eur Radiol. 2008;18:759–72.

    Article  PubMed  Google Scholar 

  • Del Guerra A, Belcari N, Llacer GL, Marcatili S, Moehrs S, Panetta D. Advanced radiation measurements techniques in diagnostic radiology and molecular imaging. Radiat Prot Dosim. 2008;131(1):136–42.

    Article  Google Scholar 

  • Ehling J, Theek B, Gremse F, Baetke S, Moeckel D, Maynard J, Ricketts S, Gruell H, Neeman M, Knuechel R, Lederle W, Kiessling F, Lammers T. Micro-CT imaging of tumor angiogenesis: quantitative measures describing micromorphology and vascularization. Am J Pathol. 2014;184(2):94–108.

    Article  Google Scholar 

  • Engelke K, Prevrhal S, Genant HK. Macro and micro imaging of bone architecture. In: Bilezikian J, Raisz L, Martin TJ, editors. Principles of bone biology, 3rd ed. vol. II:1905–1942. Academic Press; 2008.

    Google Scholar 

  • Flohr T, McCollough CH, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16:256–68.

    Article  PubMed  Google Scholar 

  • Ford NL, Thornton MM, Holdsworth DW. Fundamental image quality limits for microcomputed tomography in small animals. Med Phys. 2003;30(11):2869–77.

    Article  CAS  PubMed  Google Scholar 

  • Holdsworth DW, Thornton MM. Micro-CT in small animal and specimen imaging. Trends Biotechnol. 2002;20(8):S34–9.

    Article  Google Scholar 

  • Hupfer M, Kolditz D, Nowak T, Eisa F, Brauweiler R, Kalender WA. Dosimetry concepts for scanner quality assurance and tissue dose assessment in micro-CT. Med Phys. 2012a;39(2):658–70.

    Article  CAS  PubMed  Google Scholar 

  • Hupfer M, Nowak T, Brauweiler R, Eisa F, Kalender WA. Spectral optimization for micro-CT. Med Phys. 2012b;39(6):3229–39.

    Article  PubMed  Google Scholar 

  • Johnson TRC, Krauß B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17:1510–7.

    Article  PubMed  Google Scholar 

  • Jost G, Pietsch H, Lengsfeld P, Hütter J, Sieber MA. The impact of the viscosity and osmolality of iodine contrast agents on renal elimination. Invest Radiol. 2010;45(5):255–61.

    Google Scholar 

  • Kalender WA, Perman WH, Vetter JR, Klotz E. Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys. 1986;13(3):334–9.

    Article  CAS  PubMed  Google Scholar 

  • Kalender WA, Deak P, Kellermeier M, Van Straten M, Vollmar S. Application- and patient size-dependent optimization of x-ray spectra for CT. Med Phys. 2009;36(3):993–1007.

    Article  PubMed  Google Scholar 

  • Kalender WA. Computed tomography. Fundamentals, system technology, image quality, applications. 3rd ed. Erlangen: Publicis; 2011.

    Google Scholar 

  • Kalender WA, Beister M, Boone JM, Kolditz D, Vollmar SV, Weigel MCC. High-resolution spiral CT of the breast at very low dose: concept and feasibility considerations. Eur Radiol. 2012;22(1):1–8.

    Article  PubMed  Google Scholar 

  • Kastl S, Sommer T, Klein W, Hohenberger W, Engelke K. Accuracy and precision of bone mineral density and bone mineral content in excised rat humeri using fan beam dual-energy X-ray absorptiometry. Bone. 2002;30(1):243–6.

    Article  CAS  PubMed  Google Scholar 

  • Libouban H, Simon Y, Silve C, et al. Comparison of pencil-, fan-, and cone-beam dual X-ray absorptiometers for evaluation of bone mineral content in excised rat bone. J Clin Densitom. 2002;5(4):355–61.

    Article  PubMed  Google Scholar 

  • Lu J. Advanced methods for the quantification of trabecular bone structure and density in micro computed tomography. ed. Institute of Medizin. Physik der FAU Erlangen-Nürnberg vol. 20, Shaker Verlag, Aachen 2011.

    Google Scholar 

  • Nazarian A, Cory E, Muller R, Snyder BD. Shortcomings of DXA to assess changes in bone tissue density and microstructure induced by metabolic bone diseases in rat models. Osteoporos Int. 2009;20(1):123–32.

    Article  CAS  PubMed  Google Scholar 

  • Paulus MJ, Gleason SS, Kennel SJ, Hunsicker PR, Johnson DK. High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia. 2000;2(1–2):62–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poeschinger T, Renner A, Eisa F, Dobosz M, Strobel S, Weber TG, Brauweiler R, Kalender WA, Scheuer W. Dynamic contrast-enhanced micro computed tomography correlates with 3-dimensional fluorescence ultramicroscopy in antiangiogenic therapy of breast cancer xenografts. Invest Radiol. 2014;49(7):445–56.

    Article  CAS  Google Scholar 

  • Ritman EL. Micro-computed tomography - current status and development. Annu Rev Biomed Eng. 2004;6:185–208.

    Article  CAS  PubMed  Google Scholar 

  • Schlomka JP, Roessl E, Dorscheid R, et al. Experimental feasibility of multi-energy photon-counting K-edge imaging in preclinical computed tomography. Phys Med Biol. 2008;53(15):4031–47.

    Article  CAS  PubMed  Google Scholar 

  • Soon G, Quintin A, Scalfo F, et al. PIXImus bone densitometer and associated technical measurement issues of skeletal growth in the young rat. Calcif Tissue Int. 2006;78(3):186–92.

    Article  CAS  PubMed  Google Scholar 

  • UNSCEAR. Annex D: medical radiation exposures. New York: United Nations Publications; 2000.

    Google Scholar 

CT Contrast Agents

  • Allen TM. The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by mononuclear phagocyte system. Adv Drug Deliv Rev. 1994;13:285–309.

    Article  CAS  Google Scholar 

  • Bakan DA, Doerr-Stevens JK, Weichert JP, et al. Imaging efficacy of a hepatocyte-selective polyiodinated triglyceride for contrast-enhanced computed tomography. Am J Ther. 2001;8:359–65.

    Article  CAS  PubMed  Google Scholar 

  • Cassel DM, Young SW, Brody WR, et al. Radiographic blood pool contrast agents for vascular and tumor imaging with projection radiography and computed tomography. J Comput Assist Tomogr. 1982;6(1):141–6.

    Article  CAS  PubMed  Google Scholar 

  • Choukèr A, Lizak M, Schimel D, et al. Comparison of Fenestra VC contrast-enhanced computed tomography imaging with gadopentetate dimeglumine and Ferucarbotran magnetic resonance imaging for the in vivo evaluation of murine liver damage after ischemia and reperfusion. Invest Radiol. 2008;43:77–91.

    Article  PubMed  Google Scholar 

  • Ford NL, Graham KC, Groom AC, et al. Time-course characterization of the computed tomography contrast enhancement of an iodinated blood-pool contrast agent in mice using a volumetric flat-panel equipped computed tomography scanner. Invest Radiol. 2006;41(4):384–90.

    Article  PubMed  Google Scholar 

  • Graham KC, Ford NL, MacKenzie LT, et al. Noninvasive quantification of tumor volume in preclinical liver metastasis models using contrast-enhanced X-ray computed tomography. Invest Radiol. 2008;43:92–9.

    Article  PubMed  Google Scholar 

  • Hainfeld JF, Slatkin DN, Focella TM, et al. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79:248–53.

    Article  CAS  PubMed  Google Scholar 

  • Henning T, Weber AW, Bauer JS, et al. Imaging characteristics of DHOG, a hepatobiliary contrast agent for preclinical microCT in mice. Acta Radiol. 2008;15:342–9.

    Google Scholar 

  • Hughes PM, Bisset R. Non-ionic contrast media: a comparison of iodine delivery rates during manual injection angiography. Br J Radiol. 1991;64(761):417–9.

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Park JH, Kim YI, et al. Experimental tissue damage after subcutaneous injection of water soluble contrast media. Invest Radiol. 1990;25:678–85.

    Article  CAS  PubMed  Google Scholar 

  • Koa C-Y, Hoffman EA, Beck KC, et al. Long-residence-time nano-scale liposomal iohexol for X-ray-based blood pool imaging. Acta Radiol. 2003;10:475–83.

    Google Scholar 

  • Krause W, Leike J, Sachse A, et al. Characterization of iopromide liposomes. Invest Radiol. 1993;28(11):1028–32.

    Article  CAS  PubMed  Google Scholar 

  • Krause W. Preclinical characterization of iopromide. Invest Radiol. 1994;29(1):S21–32.

    Article  CAS  PubMed  Google Scholar 

  • Mützel W, Speck U, Weinmann H-J. Pharmacokinetics of iopromide in rat and dog. In: Taenzer V, Zeitler E, editors. Contrast media in urography, angiography and computed tomography. Stuttgart: Thieme; 1983. p. 85–90.

    Google Scholar 

  • Poste G. Liposome targeting in vivo: problems and opportunities. Biol Cell. 1983;47:19–38.

    CAS  Google Scholar 

  • Rabin O, Perez JM, Grimm J, et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater. 2006;5(2):118–22.

    Article  CAS  PubMed  Google Scholar 

  • Rau T, Mathey D, Schofer J. High-dose tolerance of iodinated x-ray contrast media. New developments in x-ray and MR angiography symposium CIRSE, 9.9.96, Funchal, Madeira. Cardiovasc Intervent Radiol. 1997;20:8–9.

    Google Scholar 

  • Rosovsky M, Rusinek H, Berenstein A, et al. High-dose administration of non-ionic contrast media: a retrospective review. Radiology. 1996;200:119–22.

    Article  CAS  PubMed  Google Scholar 

  • Sachse A, Leike JU, Schneider T, et al. Biodistribution and computed tomography blood-pool imaging properties of polyethylene glycol-coated iopromide-carrying. Invest Radiol. 1997;32(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  • Schmiedl UP, Krause W, Leike J, et al. CT blood pool enhancement in primates with iopromide-carrying liposomes containing soy phosphatidyl glycerol. Acad Radiol. 1999;6:164–9.

    Article  CAS  PubMed  Google Scholar 

  • Seltzer SE, Gregoriadis G, Dick R. Evaluation of the dehydration-rehydration method for production of contrast-carrying liposomes. Invest Radiol. 1988;23(2):131–8.

    Article  CAS  PubMed  Google Scholar 

  • Senior JH. Fate and behaviour of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst. 1987;3:123–93.

    CAS  PubMed  Google Scholar 

  • Torchilin VP, Frank-Kamenetsky MD, Wolf GL. CT visualization of blood pool in rats by using long-circulating, iodine-containing micelles. Acad Radiol. 1999;6:61–5.

    Article  CAS  PubMed  Google Scholar 

  • Vera DR, Mattrey RF. A molecular CT blood pool contrast agent. Acad Radiol. 2002;9:784–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hubertus Pietsch or Hubertus Pietsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Brauweiler, R., Engelke, K., Hupfer, M., Kalender, W.A., Karolczak, M., Pietsch, H. (2017). X-Ray and X-Ray-CT. In: Kiessling, F., Pichler, B., Hauff, P. (eds) Small Animal Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42202-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42202-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42200-8

  • Online ISBN: 978-3-319-42202-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics