Skip to main content

Cell-ECM Interactions in Tumor Invasion

  • Chapter
  • First Online:
Systems Biology of Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 936))

Abstract

The cancer cells obtain their invasion potential not only by genetic mutations, but also by changing their cellular biophysical and biomechanical features and adapting to the surrounding microenvironments. The extracellular matrix, as a crucial component of the tumor microenvironment, provides the mechanical support for the tissue, mediates the cell-microenvironment interactions, and plays a key role in cancer cell invasion. The biomechanics of the extracellular matrix, particularly collagen, have been extensively studied in the biomechanics community. Cell migration has also enjoyed much attention from both the experimental and modeling efforts. However, the detailed mechanistic understanding of tumor cell-ECM interactions, especially during cancer invasion, has been unclear. This chapter reviews the recent advances in the studies of ECM biomechanics, cell migration, and cell-ECM interactions in the context of cancer invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abhilash AS, Baker BM, Trappmann B, Chen CS, Shenoy VB (2014) Remodeling of fibrous extracellular matrices by contractile cells: predictions from discrete fiber network simulations. Biophys J 107(8):1829–1840. doi:10.1016/j.bpj.2014.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akiri G, Sabo E, Dafni H, Vadasz Z, Kartvelishvily Y, Gan N, Kessler O, Cohen T, Resnick M, Neeman M, Neufeld G (2003) Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Cancer Res 63(7):1657–1666

    CAS  PubMed  Google Scholar 

  3. Alexander S, Weigelin B, Winkler F, Friedl P (2013) Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response. Curr Opin Cell Biol 25(5):659–671. doi:10.1016/j.ceb.2013.07.001

    Article  CAS  PubMed  Google Scholar 

  4. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472

    Article  CAS  PubMed  Google Scholar 

  5. Barnhart E, Lee K-C, Allen GM, Theriot JA, Mogilner A (2015) Balance between cell−substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes. Proc Natl Acad Sci 112(16):5045–5050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barnhart EL, Lee KC, Keren K, Mogilner A, Theriot JA (2011) An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS Biol 9(5):e1001059. doi:10.1371/journal.pbio.1001059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bauer AL, Jackson TL, Jiang Y (2009) Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol 5(7):e1000445. doi:10.1371/journal.pcbi.1000445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Borau C, Polacheck WJ, Kamm RD, García-Aznar JM (2014) Probabilistic Voxel-Fe model for single cell motility in 3D. In Silico Cell Tissue Sci 1(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bordeleau F, Ta A, Ca R-K (2014) Physical biology in cancer. 5. The rocky road of metastasis: the role of cytoskeletal mechanics in cell migratory response to 3D matrix topography. Am Physiol Cell Physiol 306(2):C110–C120

    Article  CAS  Google Scholar 

  10. Bordeleau F, Bessard J, Marceau N, Sheng Y (2011) Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers. J Biomed Opt 16(9):095005

    Article  PubMed  CAS  Google Scholar 

  11. Bordeleau F, Bessard J, Sheng Y, Marceau N (2008) Keratin contribution to cellular mechanical stress response at focal adhesions as assayed by laser tweezers. Biochem Cell Biol 86(4):352–359

    Article  CAS  PubMed  Google Scholar 

  12. Boucher Y, Salehi H, Witwer B, Harsh GR, Jain RK (1997) Interstitial fluid pressure in intracranial tumours in patients and in rodents. Br J Cancer 75(6):829–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S, Yaffe MJ (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356(3):227–236. doi:10.1056/NEJMoa062790

    Article  CAS  PubMed  Google Scholar 

  14. Byron A, Ja A, Humphries JD, Jacquemet G, Koper EJ, Warwood S, Choi CK, Stroud MJ, Chen CS, Knight D, Humphries MJ (2015) A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting. Nat Commun 6(6135):1–14

    Google Scholar 

  15. Carey SP, Starchenko A, McGregor AL, Reinhart-King CA (2013) Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model. Clin Exp Metastasis 30(5):615–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ea C-A, Micoulet A, Blümmel J, Auernheimer J, Kessler H, Spatz JP (2006) Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. Eur J Cell Biol 85(3-4):219–224

    Article  CAS  Google Scholar 

  17. Chen B-C, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Janetopoulos C, Wu XS, Hammer JA, Liu Z, English BP, Mimori-Kiyosue Y, Romero DP, Ritter AT, Lippincott-Schwartz J, Fritz-Laylin L, Mullins RD, Mitchell DM, Bembenek JN, Reymann A-C, Bohme R, Grill SW, Wang JT, Seydoux G, Tulu US, Kiehart DP, Betzig E (2014) Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346(6208):1257998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chisholm RH, Hughes BD, Landman KA, Zaman MH (2013) Analytic study of three-dimensional single cell migration with and without proteolytic enzymes. Cell Mol Bioeng 6(2):239–249. doi:10.1007/s12195-012-0261-8

    Article  CAS  Google Scholar 

  19. Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88(1):39–48

    Article  CAS  PubMed  Google Scholar 

  20. Chung BM, Rotty JD, Pa C (2013) Networking galore: intermediate filaments and cell migration. Curr Opin Cell Biol 25(5):600–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3(12):921–930. doi:10.1038/nrc1231

    Article  CAS  PubMed  Google Scholar 

  22. Cook JA, Gius D, Wink DA, Krishna MC, Russo A, Mitchell JB (2004) Oxidative stress, redox, and the tumor microenvironment. Semin Radiat Oncol 14(3):259–266

    Article  PubMed  Google Scholar 

  23. Coyer SR, Singh A, Dumbauld DW, Calderwood DA, Craig SW, Delamarche E, Garcia AJ (2012) Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. J Cell Sci 125(21):5110–5123. doi:10.1242/jcs.108035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712. doi:10.1126/science.1064829

    Article  CAS  PubMed  Google Scholar 

  25. Dahl KN, Engler AJ, Pajerowski JD, Discher DE (2005) Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys J 89(4):2855–2864. doi:10.1529/biophysj.105.062554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102(11):1307–1318. doi:10.1161/CIRCRESAHA.108.173989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davidson PM, Sliz J, Isermann P, Denais C, Lammerding J (2015) Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments. Integr Biol 7(12):1534–1546. doi:10.1039/c5ib00200a

    Article  CAS  Google Scholar 

  28. Dembo M, Torney DC, Saxman K, Hammer D (1988) The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond B Biol Sci 234(1274):55–83

    Article  CAS  PubMed  Google Scholar 

  29. Diaz-Cano SJ (2012) Tumor heterogeneity: mechanisms and bases for a reliable application of molecular marker design. Int J Mol Sci 13(2):1951–2011. doi:10.3390/ijms13021951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430(6995):35–44. doi:10.1038/nature02579

    Article  PubMed  Google Scholar 

  31. Even-Ram S, Yamada KM (2005) Cell migration in 3D matrix. Curr Opin Cell Biol 17(5):524–532. doi:10.1016/j.ceb.2005.08.015

    Article  CAS  PubMed  Google Scholar 

  32. Feng J, Levine H, Mao X, Sander LM (2015) Alignment and nonlinear elasticity in biopolymer gels. Phys Rev E Stat Nonlin Soft Matter Phys 91(4):042710. doi:10.1103/PhysRevE.91.042710

    Article  PubMed  CAS  Google Scholar 

  33. Fogelson B, Mogilner A (2014) Computational estimates of membrane flow and tension gradient in motile cells. PLoS One 9(1):e84524. doi:10.1371/journal.pone.0084524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Friedl P (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16(1):14–23. doi:10.1016/j.ceb.2003.11.001

    Article  CAS  PubMed  Google Scholar 

  35. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457. doi:10.1038/nrm2720

    Article  CAS  PubMed  Google Scholar 

  36. Friedl P, Hegerfeldt Y, Tusch M (2004) Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48(5-6):441–449

    Article  CAS  PubMed  Google Scholar 

  37. Friedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14(8):777–783. doi:10.1038/ncb2548

    Article  PubMed  CAS  Google Scholar 

  38. Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188(1):11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls α5β1 function. Science (New York) 323(5914):642–644

    Article  CAS  Google Scholar 

  40. Fu Y, Chin LK, Bourouina T, Liu AQ, VanDongen AM (2012) Nuclear deformation during breast cancer cell transmigration. Lab Chip 12(19):3774–3778. doi:10.1039/c2lc40477j

    Article  CAS  PubMed  Google Scholar 

  41. Gabella C, Bertseva E, Bottier C, Piacentini N, Bornert A, Jeney S, Forro L, Sbalzarini IF, Meister JJ, Verkhovsky AB (2014) Contact angle at the leading edge controls cell protrusion rate. Curr Biol 24(10):1126–1132

    Article  CAS  PubMed  Google Scholar 

  42. Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159(4):695–705. doi:10.1083/jcb.200204153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gallant ND, García AJ (2005) Cell adhesion strengthening and focal adhesion assembly on micropatterned substrates. Mol Biol Cell 16(9):4329–4340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gatenby RA, Gawlinski ET (2003) The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res 63(14):3847–3854

    CAS  PubMed  Google Scholar 

  45. Geiger B, Bershadsky A (2002) Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 110(2):139–142

    Article  CAS  PubMed  Google Scholar 

  46. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2(11):793–805. doi:10.1038/35099066

    Article  CAS  PubMed  Google Scholar 

  47. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33. doi:10.1038/nrm2593

    Article  CAS  PubMed  Google Scholar 

  48. Geiger B, Yamada KM (2011) Molecular architecture and function of matrix adhesions. Cold Spring Harb Perspect Biol 3(5):1–21. doi:10.1101/cshperspect.a005033

    Article  CAS  Google Scholar 

  49. Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang MT, McLean MA, Sligar SG, Chen CS, Ha T, Schwartz MA (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466(7303):263–266. doi:10.1038/nature09198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guilak F, Tedrow JR, Burgkart R (2000) Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun 269(3):781–786. doi:10.1006/bbrc.2000.2360

    Article  CAS  PubMed  Google Scholar 

  51. Guven C, Rericha E, Ott E, Losert W (2013) Modeling and measuring signal relay in noisy directed migration of cell groups. PLoS Comput Biol 9(5):e1003041. doi:10.1371/journal.pcbi.1003041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hamadi A, Bouali M, Dontenwill M, Stoeckel H, Takeda K, Ronde P (2005) Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J Cell Sci 118(19):4415–4425. doi:10.1242/jcs.02565

    Article  CAS  PubMed  Google Scholar 

  53. Harjanto D, Zaman MH (2013) Modeling extracellular matrix reorganization in 3D environments. PLoS One 8(1):e52509. doi:10.1371/journal.pone.0052509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Harley BA, Kim HD, Zaman MH, Yannas IV, Lauffenburger DA, Gibson LJ (2008) Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys J 95(8):4013–4024. doi:10.1529/biophysj.107.122598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276

    Article  CAS  PubMed  Google Scholar 

  56. Holmes WR, Edelstein-Keshet L (2012) A comparison of computational models for eukaryotic cell shape and motility. PLoS Comput Biol 8(12):e1002793. doi:10.1371/journal.pcbi.1002793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huveneers S, Danen EH (2009) Adhesion signaling – crosstalk between integrins, Src and Rho. J Cell Sci 122(Pt 8):1059–1069. doi:10.1242/jcs.039446

    Article  CAS  PubMed  Google Scholar 

  58. Icard-Arcizet D, Cardoso O, Richert A, Henon S (2008) Cell stiffening in response to external stress is correlated to actin recruitment. Biophys J 94(7):2906–2913. doi:10.1529/biophysj.107.118265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ingber DE (2003) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116(Pt 7):1157–1173

    Article  CAS  PubMed  Google Scholar 

  60. Jiang GY, Giannone G, Critchley DR, Fukumoto E, Sheetz MP (2003) Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424(6946):334–337. doi:10.1038/nature01805

    Article  CAS  PubMed  Google Scholar 

  61. Kaltenbrunner M, White MS, Glowacki ED, Sekitani T, Someya T, Sariciftci NS, Bauer S (2012) Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 3:770. doi:10.1038/ncomms1772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kaverina I, Rottner K, Small JV (1998) Targeting, capture, and stabilization of microtubules at early focal adhesions. J Cell Biol 142(1):181–190. doi:10.1083/jcb.142.1.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kaverina I, Straube A (2011) Regulation of cell migration by dynamic microtubules. Semin Cell Dev Biol 22(9):968–974. doi:10.1016/j.semcdb.2011.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kaverina I, Straube A (2011) Regulation of cell migration by dynamic microtubules. Semin Cell Dev Biol 22(9):968–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Keren K, Pincus Z, Allen GM, Barnhart EL, Marriott G, Mogilner A, Theriot JA (2008) Mechanism of shape determination in motile cells. Nature 453(7194):475–480. doi:10.1038/nature06952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim DH, Han K, Gupta K, Kwon KW, Suh KY, Levchenko A (2009) Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30(29):5433–5444. doi:10.1016/j.biomaterials.2009.06.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim MC, Whisler J, Silberberg YR, Kamm RD, Asada HH (2015) Cell invasion dynamics into a three dimensional extracellular matrix fibre network. PLoS Comput Biol 11(10):e1004535. doi:10.1371/journal.pcbi.1004535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kong F, Li Z, Parks WM, Dumbauld DW, Garcia AJ, Mould AP, Humphries MJ, Zhu C (2013) Cyclic mechanical reinforcement of integrin-ligand interactions. Mol Cell 49(6):1060–1068. doi:10.1016/j.molcel.2013.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Krishnan J, Iglesias PA (2003) Analysis of the signal transduction properties of a module of spatial sensing in eukaryotic chemotaxis. Bull Math Biol 65(1):95–128. doi:10.1006/bulm.2002.0323

    Article  CAS  PubMed  Google Scholar 

  70. Kuo JC (2013) Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. J Cell Mol Med 17(6):704–712. doi:10.1111/jcmm.12054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee B, Zhou X, Riching K, Eliceiri KW, Keely PJ, Guelcher SA, Weaver AM, Jiang Y (2014) A three-dimensional computational model of collagen network mechanics. PLoS One 9(11):e111896. doi:10.1371/journal.pone.0111896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Legate KR, Wickstrom SA, Fassler R (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 23(4):397–418. doi:10.1101/gad.1758709

    Article  CAS  PubMed  Google Scholar 

  73. Levchenko A, Iglesias PA (2002) Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys J 82(1 Pt 1):50–63. doi:10.1016/S0006-3495(02)75373-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906. doi:10.1016/j.cell.2009.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lin CQ, Bissell MJ (1993) Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J 7(9):737–743

    CAS  PubMed  Google Scholar 

  76. Liu YJ, Le Berre M, Lautenschlaeger F, Maiuri P, Callan-Jones A, Heuze M, Takaki T, Voituriez R, Piel M (2015) Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160(4):659–672. doi:10.1016/j.cell.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  77. Lombardi ML, Lammerding J (2011) Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function. Biochem Soc Trans 39(6):1729–1734. doi:10.1042/BST20110686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12):a005058. doi:10.1101/cshperspect.a005058

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406. doi:10.1083/jcb.201102147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McCormack VA, dos Santos SI (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev 15(6):1159–1169. doi:10.1158/1055-9965.EPI-06-0034

    Article  Google Scholar 

  81. Michael KE, Dumbauld DW, Burns KL, Hanks SK, Garcia AJ (2009) Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol Biol Cell 20(9):2508–2519. doi:10.1091/mbc.E08-01-0076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mrksich M, Chen CS, Xia Y, Dike LE, Ingber DE, Whitesides GM (1996) Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc Natl Acad Sci U S A 93(20):10775–10778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oakes PW, Beckham Y, Stricker J, Gardel ML (2012) Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. Dev Cell 196:3

    Google Scholar 

  84. Oryan A, Moshiri A, Sharifi P (2012) Advances in injured tendon engineering with emphasis on the role of collagen implants. Hard Tissue 1(2):12

    Article  Google Scholar 

  85. Panková K, Rösel D, Novotný M, Brábek J (2010) The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci: CMLS 67(1):63–71

    Article  PubMed  CAS  Google Scholar 

  86. Parent CA, Devreotes PN (1999) A cell’s sense of direction. Science 284(5415):765–770. doi:10.1126/science.284.5415.765

    Article  CAS  PubMed  Google Scholar 

  87. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254. doi:10.1016/j.ccr.2005.08.010

    Article  CAS  PubMed  Google Scholar 

  88. Petrie RJ, Koo H, Yamada KM (2014) Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345(6200):1062–1065. doi:10.1126/science.1256965

    Article  CAS  PubMed  Google Scholar 

  89. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38. doi:10.1186/1741-7015-4-38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11. doi:10.1186/1741-7015-6-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Provenzano PP, Keely PJ (2011) Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci 124(8):1195–1205. doi:10.1242/jcs.067009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Puklin-Faucher E, Sheetz MP (2009) The mechanical integrin cycle. J Cell Sci 122(Pt 2):179–186. doi:10.1242/jcs.042127

    Article  CAS  PubMed  Google Scholar 

  93. Riching KM, Cox BL, Salick MR, Pehlke C, Riching AS, Ponik SM, Bass BR, Crone WC, Jiang Y, Weaver AM, Eliceiri KW, Keely PJ (2014) 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys J 107(11):2546–2558. doi:10.1016/j.bpj.2014.10.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell-ECM interactions to tissue engineering. J Cell Physiol 199(2):174–180. doi:10.1002/jcp.10471

    Article  CAS  PubMed  Google Scholar 

  95. Ruprecht V, Wieser S, Callan-Jones A, Smutny M, Morita H, Sako K, Barone V, Ritsch-Marte M, Sixt M, Voituriez R, Heisenberg CP (2015) Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160(4):673–685. doi:10.1016/j.cell.2015.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Satulovsky J, Lui R, Wang YL (2008) Exploring the control circuit of cell migration by mathematical modeling. Biophys J 94(9):3671–3683. doi:10.1529/biophysj.107.117002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schmick M, Bastiaens PI (2014) The interdependence of membrane shape and cellular signal processing. Cell 156(6):1132–1138. doi:10.1016/j.cell.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  98. Serrels B, Serrels A, Brunton VG, Holt M, McLean GW, Gray CH, Jones GE, Frame MC (2007) Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex. Nat Cell Biol 9(9):1046–1056. doi:10.1038/ncb1626

    Article  CAS  PubMed  Google Scholar 

  99. Shao D, Levine H, Rappel WJ (2012) Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc Natl Acad Sci U S A 109(18):6851–6856. doi:10.1073/pnas.1203252109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F (2009) Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4(4):e4992. doi:10.1371/journal.pone.0004992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Stamenović D (2005) Microtubules may harden or soften cells, depending of the extent of cell distension. J Biomech 38(8):1728–1732

    Article  PubMed  Google Scholar 

  102. Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM (2015) Directional cell movement through tissues is controlled by exosome secretion. Nat Commun 13(6):2546–2558

    Google Scholar 

  103. Takahashi R, Nagayama S, Furu M, Kajita Y, Jin Y, Kato T, Imoto S, Sakai Y, Toguchida J (2014) AFAP1L1, a novel associating partner with vinculin, modulates cellular morphology and motility, and promotes the progression of colorectal cancers. Cancer Med 3(4):759–774. doi:10.1002/cam4.237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tozluoglu M, Tournier AL, Jenkins RP, Hooper S, Bates PA, Sahai E (2013) Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat Cell Biol 15(7):751–762. doi:10.1038/ncb2775

    Article  CAS  PubMed  Google Scholar 

  105. Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y, Jain RK, Munn LL (2012) Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci U S A 109(3):911–916. doi:10.1073/pnas.1118910109

    Article  CAS  PubMed  Google Scholar 

  106. Vader D, Kabla A, Weitz D, Mahadevan L (2009) Strain-induced alignment in collagen gels. PLoS One 4(6):e5902. doi:10.1371/journal.pone.0005902

    Article  PubMed  PubMed Central  Google Scholar 

  107. van Oers RF, Rens EG, LaValley DJ, Reinhart-King CA, Merks RM (2014) Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro. PLoS Comput Biol 10(8):e1003774. doi:10.1371/journal.pcbi.1003774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Vicente-Manzanares M, Horwitz A (2011) Cell migration: an overview. Springer, Berlin

    Google Scholar 

  109. Wehrle-Haller B (2012) Structure and function of focal adhesions. Curr Opin Cell Biol 24(1):116–124. doi:10.1016/j.ceb.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  110. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S, Gasparini G (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84(24): 1875–1887

    Article  CAS  PubMed  Google Scholar 

  111. Welch MD (2015) Cell migration, freshly squeezed. Cell 160(4):581–582. doi:10.1016/j.cell.2015.01.053

    Article  CAS  PubMed  Google Scholar 

  112. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912. doi:10.1038/onc.2008.271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160(2):267–277. doi:10.1083/jcb.200209006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wolf K, Te Lindert M, Krause M, Alexander S, TeRiet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ, Friedl P (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201(7):1069–1084. doi:10.1083/jcb.201210152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS, Friedl P (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9(8):893–904. doi:10.1038/ncb1616

    Article  CAS  PubMed  Google Scholar 

  116. Wolfenson H, Lavelin I, Geiger B (2013) Dynamic regulation of the structure and functions of integrin adhesions. Dev Cell 24(5):447–458. doi:10.1016/j.devcel.2013.02.012

    Article  CAS  PubMed  Google Scholar 

  117. Wynn ML, Rupp P, Trainor PA, Schnell S, Kulesa PM (2013) Follow-the-leader cell migration requires biased cell-cell contact and local microenvironmental signals. Phys Biol 10(3):035003. doi:10.1088/1478-3975/10/3/035003

    Article  PubMed  PubMed Central  Google Scholar 

  118. Xiong Y, Huang CH, Iglesias PA, Devreotes PN (2010) Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc Natl Acad Sci U S A 107(40):17079–17086. doi:10.1073/pnas.1011271107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yu CH, Law JBK, Suryana M, Low HY, Sheetz MP (2011) Early integrin binding to Arg-Gly-Asp peptide activates actin polymerization and contractile movement that stimulates outward translocation. Proc Natl Acad Sci U S A 108(51):20585–20590. doi:10.1073/pnas.1109485108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zaritsky A, Kaplan D, Hecht I, Natan S, Wolf L, GovNS, Ben-Jacob E, Tsarfaty I (2014) Propagating waves of directionality and coordination orchestrate collective cell migration. PLoS Comput Biol 10(7):e1003747. doi:10.1371/journal.pcbi.1003747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

He, X., Lee, B., Jiang, Y. (2016). Cell-ECM Interactions in Tumor Invasion. In: Rejniak, K. (eds) Systems Biology of Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 936. Springer, Cham. https://doi.org/10.1007/978-3-319-42023-3_4

Download citation

Publish with us

Policies and ethics