Skip to main content

Structural Changes in 2D Materials Due to Scattering of Light Ions

  • Chapter
  • First Online:
Helium Ion Microscopy

Part of the book series: NanoScience and Technology ((NANO))

  • 1639 Accesses

Abstract

The family of two–dimensional (2D) materials is an attractive subject for modern microscopy techniques such as helium and neon ion microscopy. In this chapter, we provide a theoretical treatment on the effects of light ion irradiation on the structure of 2D materials, foremost graphene, using methods from the binary collision model to molecular dynamics. While reviewing the current literature on the topic, we point out that helium and neon irradiation can be used to create specifically small point defects (single and double vacancies) or to drill features into graphene. We also point out the current lack of studies involving non-graphene 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The formula has been established for low \(c_v\) and shows asymptotically wrong behaviour for \(c_v \rightarrow 1\). It can therefore only be trusted for \(c_v \ll 1\).

References

  1. O. Lehtinen, J. Kotakoski, A. Krasheninnikov, J. Keinonen, Nanotechnology 22(17), 175306 (2011)

    Article  ADS  Google Scholar 

  2. J.F. Ziegler, J. Appl. Phys. 85(3), 1249 (1999). doi:10.1063/1.369844. http://scitation.aip.org/content/aip/journal/jap/85/3/10.1063/1.369844

    Google Scholar 

  3. A. Zobelli, A. Gloter, C. Ewels, G. Seifert, C. Colliex, Phys. Rev. B 75(24), 245402 (2007). doi:10.1103/PhysRevB.75.245402. http://link.aps.org/doi/10.1103/PhysRevB.75.245402

  4. J.C. Meyer, F. Eder, S. Kurasch, V. Skakalova, J. Kotakoski, H.J. Park, A. Chuvilin, G. Benner, A.V. Krasheninnikov, U. Kaiser, S. Roth, S. Eyhusen, Phys. Rev. Lett. 108(19), 196102 (2012). doi:10.1103/PhysRevLett.108.196102. http://link.aps.org/doi/10.1103/PhysRevLett.108.196102

  5. J.C. Meyer, F. Eder, S. Kurasch, V. Skakalova, J. Kotakoski, H.J. Park, S. Roth, A. Chuvilin, S. Eyhusen, G. Benner, A.V. Krasheninnikov, U. Kaiser, Phys. Rev. Lett. 110(23), 239902 (2013). doi:10.1103/PhysRevLett.110.239902. http://link.aps.org/doi/10.1103/PhysRevLett.110.239902

  6. H.P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, Phys. Rev. Lett. 109(3), 035503 (2012)

    Article  ADS  Google Scholar 

  7. O. Lehtinen, J. Kotakoski, A. Krasheninnikov, A. Tolvanen, K. Nordlund, J. Keinonen, Phys. Rev. B 81(15), 153401 (2010)

    Article  ADS  Google Scholar 

  8. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 31(2), 459 (1959). doi:10.1063/1.1730376. http://link.aip.org/link/JCPSA6/v31/i2/p459/s1&Agg=doi

    Google Scholar 

  9. B. Alder, T. Wainwright, J. Chem. Phys. 33(5), 1439 (1960). http://link.aip.org/link/?JCPSA6/33/1439/1

  10. D. Marx, J. Hutter, in Modern Methods and Algorithms of Quantum Chemistry, NIC series, vol. 1 (2000), NIC series, pp. 301–449. http://www.theochem.ruhr-uni-bochum.de/research/marx/marx.pdf

  11. L. Pauling, J. Am. Chem. Soc. 69(3), 542 (1947). doi:10.1021/ja01195a024. http://dx.doi.org/10.1021/ja01195a024

    Google Scholar 

  12. D. Brenner, O. Shenderova, J. Harrison, S. Stuart, B. Ni, S. Sinnott, J. Phys. Cond. Matt. 14, 783 (2002). http://iopscience.iop.org/0953-8984/14/4/312

  13. S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112(14), 6472 (2000). doi:10.1063/1.481208. http://link.aip.org/link/JCPSA6/v112/i14/p6472/s1&Agg=doi

    Google Scholar 

  14. J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988). doi:10.1103/PhysRevLett.61. http://link.aps.org/doi/10.1103/PhysRevLett.61.2879

  15. K. Chenoweth, A.C.T. van Duin, W.A. Goddard, J. Phys. Chem. A 112(5), 1040 (2008). doi:10.1021/jp709896w. http://dx.doi.org/10.1021/jp709896w

    Google Scholar 

  16. K. Albe, W. Möller, Comput. Mater. Sci. 10(1), 111 (1998)

    Article  Google Scholar 

  17. T. Liang, S.R. Phillpot, S.B. Sinnott, Phys. Rev. B 79, 245110 (2009). doi:10.1103/PhysRevB.79.245110. http://link.aps.org/doi/10.1103/PhysRevB.79.245110

  18. J.W. Jiang, Nanotechnology 26(31), 315706 (2015). doi:10.1088/0957-4484/26/31/315706. http://iopscience.iop.org/0957-4484/26/31/315706

    Google Scholar 

  19. T. Watanabe, H. Fujiwara, H. Noguchi, T. Hoshino, I. Ohdomari, Japan. J. Appl. Phys. 38(4A), L366 (1999)

    Article  ADS  Google Scholar 

  20. H.J. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J. Haak, J. Chem. Phys. 81(8), 3684 (1984)

    Article  ADS  Google Scholar 

  21. K. Nordlund, Comput. Mater. Sci. 3(4), 448 (1995). doi:10.1016/0927-0256(94)00085-Q. http://www.sciencedirect.com/science/article/pii/092702569400085Q

    Google Scholar 

  22. LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov/

  23. ASE, Atomic Simulation Environment. https://wiki.fysik.dtu.dk/ase/

  24. VASP, Vienna Ab Initio Simulation Package. https://www.vasp.at/

  25. Quantum Espresso. http://www.quantum-espresso.org/

  26. D. Fox, Y.B. Zhou, A. O’Neill, S. Kumar, J.J. Wang, J.N. Coleman, G.S. Duesberg, J.F. Donegan, H.Z. Zhang. Nanotechnology 24(33), 335702 (2013). doi:10.1088/0957-4484/24/33/335702. http://iopscience.iop.org/0957-4484/24/33/335702

    Google Scholar 

  27. E. Ă…hlgren, J. Kotakoski, O. Lehtinen, A. Krasheninnikov, Appl. Phys. Lett. 100(23), 233108 (2012)

    Article  ADS  Google Scholar 

  28. B.R.K. Nanda, M. Sherafati, Z.S. Popović, S. Satpathy, New J. Phys. 14(8), 083004 (2012). http://stacks.iop.org/1367-2630/14/i=8/a=083004

    Google Scholar 

  29. A. Stone, D. Wales, Chemical Physics Letters 128(5–6), 501 (1986). http://dx.doi.org/10.1016/0009-2614(86)80661-3. http://www.sciencedirect.com/science/article/pii/0009261486806613

    Google Scholar 

  30. P.O. Lehtinen, A.S. Foster, A. Ayuela, A. Krasheninnikov, K. Nordlund, R.M. Nieminen, Phys. Rev. Lett. 91, 017202 (2003). doi:10.1103/PhysRevLett. 91.017202. http://link.aps.org/doi/10.1103/PhysRevLett.91.017202

  31. O. Lehtinen, N. Vats, G. Algara-Siller, P. Knyrim, U. Kaiser, Nano Lett. 15(1), 235 (2014)

    Article  ADS  Google Scholar 

  32. S. Standop, O. Lehtinen, C. Herbig, G. Lewes-Malandrakis, F. Craes, J. Kotakoski, T. Michely, A.V. Krasheninnikov, C. Busse, Nano Lett. 13(5), 1948 (2013)

    Article  ADS  Google Scholar 

  33. F.R. Eder, J. Kotakoski, U. Kaiser, J.C. Meyer, Sci. Rep. 4, 4060 (2014). doi:10.1038/srep04060. http://www.nature.com/srep/2014/140211/srep04060/full/srep04060.html

  34. J. Kotakoski, C. Brand, Y. Lilach, O. Cheshnovsky, C. Mangler, M. Arndt, J.C. Meyer, Nano Lett. (2015). doi:10.1021/acs.nanolett.5b02063. http://dx.doi.org/10.1021/acs.nanolett.5b02063

    Google Scholar 

  35. D. Pickard, L. Scipioni, Zeiss application note (2009). http://wwwha.tcd.ie/Physics/ultramicroscopy/teaching/PY5019/HIM/AN_ORION_PLUS_Graphene.pdf

  36. D.C. Bell, M.C. Lemme, L.a. Stern, J.R. Williams, C.M. Marcus. Nanotechnology 20(45), 455301 (2009). doi:10.1088/0957-4484/20/45/455301. http://www.ncbi.nlm.nih.gov/pubmed/19822934

    Google Scholar 

  37. S.A. Boden, Z. Moktadir, D.M. Bagnall, H. Mizuta, H.N. Rutt, Microelectron. Eng. 88(8), 2452 (2011). doi:10.1016/j.mee.2010.11.041. http://www.sciencedirect.com/science/article/pii/S0167931710004624

    Google Scholar 

  38. S. Nakaharai, T. Iijima, S. Ogawa, S. Suzuki, S. Li, K. Tsukagoshi, S. Sato, N. Yokoyama ACS Nano 7, 5694 (2013). http://pubs.acs.org/doi/abs/10.1021/nn401992q?journalCode=ancac3&quickLinkVolume=7&quickLinkPage=5694&selectedTab=citation&volume=7

  39. N. Kalhor, S.A. Boden, H. Mizuta, Microelectron. Eng. 114, 70 (2014). doi:10.1016/j.mee.2013.09.018. http://www.sciencedirect.com/science/article/pii/S0167931713006229

    Google Scholar 

  40. A.N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, C. Zhou, ACS Nano 8(2), 1538 (2014). doi:10.1021/nn405759v. http://dx.doi.org/10.1021/nn405759v

    Google Scholar 

  41. S. Hang, Z. Moktadir, H. Mizuta, Carbon 72, 233 (2014). doi:10.1016/j.carbon.2014.01.071. http://www.sciencedirect.com/science/article/pii/S0008622314001298

    Google Scholar 

  42. B.S. Archanjo, B. Fragneaud, L.G. Cançado, D. Winston, F. Miao, C.A. Achete, G. Medeiros-Ribeiro, Appl. Phys. Lett. 104(19), 193114 (2014). doi:10.1063/1.4878407. http://scitation.aip.org/content/aip/journal/apl/104/19/10.1063/1.4878407

    Google Scholar 

  43. Y. Naitou, T. Iijima, S. Ogawa, Appl. Phys. Lett. 106(3), 033103 (2015). doi:10.1063/1.4906415. http://scitation.aip.org/content/aip/journal/apl/106/3/10.1063/1.4906415

    Google Scholar 

  44. E.N.D. Araujo, J.C. Brant, B.S. Archanjo, G. Medeiros-Ribeiro, F. Plentz, E.S. Alves, Phys. Rev. B 91(24), 245414 (2015). doi:10.1103/PhysRevB.91.245414. http://link.aps.org/doi/10.1103/PhysRevB.91.245414

  45. M.C. Lemme, D.C. Bell, J.R. Williams, L.a. Stern, B.W.H. Baugher, P. Jarillo-Herrero, C.M. Marcus. ACS nano 3(9), 2674 (2009). doi:10.1021/nn900744z. http://www.ncbi.nlm.nih.gov/pubmed/19769403

    Google Scholar 

  46. M. Annamalai, S. Mathew, V. Viswanathan, C. Fang, D. Pickard, M. Palaniapan, in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International (2011), pp. 2578–2581. doi:10.1109/TRANSDUCERS.2011.5969824

  47. G. Nanda, S. Goswami, K. Watanabe, T. Taniguchi, P.F.A. Alkemade, Nano Lett. 15(6), 4006 (2015). doi:10.1021/acs.nanolett.5b00939. http://dx.doi.org/10.1021/acs.nanolett.5b00939

    Google Scholar 

  48. C.T. Pan, J.A. Hinks, Q.M. Ramasse, G. Greaves, U. Bangert, S.E. Donnelly, S.J. Haigh, Sci. Rep. 4, 6334 (2014). doi:10.1038/srep06334. http://www.nature.com/srep/2014/140911/srep06334/full/srep06334.html

  49. O. Lehtinen, E. Dumur, J. Kotakoski, A. Krasheninnikov, K. Nordlund, J. Keinonen, Nucl. Instrum. Methods Phys. Res., Sect. A 269(11), 1327 (2011)

    Article  Google Scholar 

  50. E. Åhlgren, S. Hämäläinen, O. Lehtinen, P. Liljeroth, J. Kotakoski, Phys. Rev. B 88(15), 155419 (2013)

    Article  ADS  Google Scholar 

  51. C. Herbig, E.H. Ă…hlgren, W. Jolie, C. Busse, J. Kotakoski, A.V. Krasheninnikov, T. Michely, ACS Nano 8, 12208 (2014). doi:10.1021/nn503874n. http://pubs.acs.org/doi/abs/10.1021/nn503874n

    Google Scholar 

  52. C. Herbig, E.H. Åhlgren, U.A. Schröder, A.J. Martínez-Galera, M.A. Arman, W. Jolie, C. Busse, J. Kotakoski, J. Knudsen, A.V. Krasheninnikov, T. Michely. ACS Nano 9(5), 4664 (2015). doi:10.1021/acsnano.5b02303. http://dx.doi.org/10.1021/acsnano.5b02303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ossi Lehtinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lehtinen, O., Kotakoski, J. (2016). Structural Changes in 2D Materials Due to Scattering of Light Ions. In: Hlawacek, G., Gölzhäuser, A. (eds) Helium Ion Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-41990-9_3

Download citation

Publish with us

Policies and ethics