Skip to main content

Single Atom Gas Field Ion Sources for Scanning Ion Microscopy

  • Chapter
  • First Online:
Helium Ion Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter discusses fabrication and experimental evaluation of W(111) single atom tips (SATs) for gas field ion source applications. Firstly, a brief history of field ion microscopy (FIM) will be given since it will be heavily relied on throughout the text. We will discuss ion current generation in FIM and carry that knowledge over to fabricated SATs. Secondly, gas assisted etching and evaporation process will be discussed in detail. It will be shown that nanotip shape, and therefore SAT characteristics, can be controlled and modified to achieve desirable ion beam properties. Lastly, we will evaluate ion beam width as a function of tip voltage and temperature as examples of experimental efforts to better understand gas field ion source performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is also true for an atomically defined (point) electron source.

  2. 2.

    It should be noted that MCP gain can change (decreases) over time so the calibration should be performed periodically.

  3. 3.

    Once a desired number of frames was collected, the oldest image was discarded and a newly acquired frame was added.

References

  1. N.P. Economou, J.A. Notte, W.B. Thompson, Scanning 34(2), 83 (2012). doi:10.1002/sca.20239. http://www.ncbi.nlm.nih.gov/pubmed/21611954. N.P. Economou, J.A. Notte, W.B. Thompson, Eng Historical Article 2011/05/26 06:00 Scanning, Mar–Apr 2012, 34(2):83–89. doi: 10.1002/sca.20239 (Epub 2011 May 24)

    Google Scholar 

  2. T.T. Tsong, Atom-Probe Field Ion Microscopy (Cambridge University Press, 1990)

    Google Scholar 

  3. M. Miller, A. Cerezo, M. Hetherington, G. Smith, Atom Probe Field Ion Microscopy (Oxford Science Publications, 2006)

    Google Scholar 

  4. H.W. Fink, IBM J. Res. Dev. 30(5), 460 (1986). doi:10.1147/rd.305.0460

    Google Scholar 

  5. H.W. Fink, Phys. Scr. 38(2), 260 (1988). doi:10.1088/0031-8949/38/2/029. http://stacks.iop.org/1402-4896/38/i=2/a=029

    Google Scholar 

  6. G. Antczak, G. Ehrlich, Surface Diffusion (Cambridge University Press, 2010). http://dx.doi.org/10.1017/CBO9780511730320. Cambridge Books Online

  7. R. Borret, K. Bohringer, S. Kalbitzer, J. Phys. D 23, 1271 (1990)

    Google Scholar 

  8. A. Knoblauch, T. Miller, C. Klatt, S. Kalbitzer, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interac. Mater. Atoms 139(1–4), 20 (1998). doi:10.1016/S0168-583X(97)00960-9. http://www.sciencedirect.com/science/article/pii/S0168583X97009609

    Google Scholar 

  9. T. Miller, A. Knoblauch, C. Wilbertz, S. Kalbitzer, Appl. Phys. A 61, 99 (1995)

    Article  ADS  Google Scholar 

  10. R. Borret, K. Jousten, K. Bohringer, S. Kalbitzer, J. Phys. D: Appl. Phys. 21(12), 1835 (1988). http://stacks.iop.org/0022-3727/21/i=12/a=031

    Google Scholar 

  11. K. Jousten, K. Bohringer, R. Borret, S. Kalbitzer, Ultramicroscopy 26(3), 301 (1988)

    Article  Google Scholar 

  12. V.T. Binh, J. Marien, Surf. Sci. 202, L539 (1988)

    Article  ADS  Google Scholar 

  13. V.T. Binh, S.T. Purcell, App. Surf. Sci. 111, 157 (1997)

    Article  ADS  Google Scholar 

  14. V.T. Binh, N. Garcia, Ultramicroscopy 42–44(Part 1), 80 (1992). doi:10.1016/0304-3991(92)90249-J. http://www.sciencedirect.com/science/article/pii/030439919290249J

    Google Scholar 

  15. V.T. Binh, S.T. Purcell, N. Garcia, J. Doglioni, Phys. Rev. Lett. 69(17), 2527 (1992). http://link.aps.org/doi/10.1103/PhysRevLett.69.2527

    Google Scholar 

  16. S.T. Purcell, V.T. Binh, N. García, Appl. Phys. Lett 67(3), 436 (1995)

    Article  ADS  Google Scholar 

  17. V. Butenko, Y. Vlasov, O. Golubev, V. Shrednik, Surf. Sci. 266, 165 (1992)

    Article  ADS  Google Scholar 

  18. R. Bryl, A. Szczepkowicz, Appl. Surf. Sci. 241(3–4), 431 (2005). doi:10.1016/j.apsusc.2004.07.041

    Article  ADS  Google Scholar 

  19. A. Szczepkowicz, Surf. Sci. 605(17–18), 1719 (2011). doi:10.1016/j.susc.2011.06.005

    Article  ADS  Google Scholar 

  20. A. Szczepkowicz, R. Bryl, Surf. Sci. 559(2–3), L169 (2004). doi:10.1016/j.susc.2004.04.035

    Article  ADS  Google Scholar 

  21. H. Wengelnik, H. Neddermeyer, J. Vac. Sci. Technol. A: Vac. Surf. Films 8(1), 438 (1990). doi:10.1116/1.576415

    Article  ADS  Google Scholar 

  22. H.S. Kim, M.L. Yu, U. Staufer, L.P. Muray, D.P. Kern, T.H.P. Chang, J. Vac. Sci. Technol. B 11(6), 2327 (1993). doi:10.1116/1.586981. http://scitation.aip.org/content/avs/journal/jvstb/11/6/10.1116/1.586981

    Google Scholar 

  23. M.L. Yu, B.W. Hussey, H.S. Kim, T.H.P. Chang, J. Vac. Sci. Technol. B 12(6), 3431 (1994). doi:10.1116/1.587526. http://scitation.aip.org/content/avs/journal/jvstb/12/6/10.1116/1.587526

    Google Scholar 

  24. C. Vesa, R. Urban, J.L. Pitters, R.A. Wolkow, Appl. Surf. Sci. 300, 16 (2014)

    Article  ADS  Google Scholar 

  25. C.C. Chang, H.S. Kuo, I.S. Hwang, T.T. Tsong, Nanotechnology 20(11), 115401 (2009). doi:10.1088/0957-4484/20/11/115401. http://www.ncbi.nlm.nih.gov/pubmed/19420438. C.-C. Chang, H.-S. Kuo, I.-S. Hwang, T.T. Tsong, Research Support, Non-U.S. Gov’t England 2009/05/08 09:00 Nanotechnology 20(11), 115401. doi:10.1088/0957-4484/20/11/115401. Epub 2009 Feb 24

    Google Scholar 

  26. T.Y. Fu, L.C. Cheng, C.H. Nien, T.T. Tsong, Phys. Rev. B 64(11) (2001). doi:10.1103/PhysRevB.64.113401

  27. H.S. Kuo, I.S. Hwang, T.Y. Fu, Y.H. Lu, C.Y. Lin, T.T. Tsong, Appl. Phys. Lett. 92, 063106 (2008)

    Article  ADS  Google Scholar 

  28. H.S. Kuo, I.S. Hwang, T.Y. Fu, J.Y. Wu, C.C. Chang, T.T. Tsong, Nano Lett. 4(12), 2379 (2004). doi:10.1021/nl048569b. http://dx.doi.org/10.1021/nl048569b

    Google Scholar 

  29. K. Nomura, E. Rokuta, T. Itagaki, C. Oshima, H.S. Kuo, T.T. Tsong, e-J. Surf. Sci. Nanotechnol. 6, 25 (2008)

    Article  Google Scholar 

  30. E. Rokuta, T. Itagaki, T. Ishikawa, B.L. Cho, H.S. Kuo, T.T. Tsong, C. Oshima, Appl. Surf. Sci. 252(10), 3686 (2006). doi:10.1016/j.apsusc.2005.05.075

    Article  ADS  Google Scholar 

  31. S.T. Purcell, V.T. Binh, Appl. Phys. Lett. 75(9), 1332 (1999). doi:10.1063/1.124684

    Article  ADS  Google Scholar 

  32. S. Purcell, V. Binh, P. Thevenard, Nanotechnology 12, 168 (2001)

    Article  ADS  Google Scholar 

  33. K. Pelhos, T.E. Madey, R. Blaszczyszyn, Surf. Sci. 426(1), 61 (1999). doi:10.1016/S0039-6028(99)00196-X. http://www.sciencedirect.com/science/article/pii/S003960289900196X

    Google Scholar 

  34. G. Antczak, T.E. Madey, M. Blaszczyszyn, R. Blaszczyszyn, Vacuum 63(1–2), 43 (2001). doi:10.1016/S0042-207X(01)00169-5. http://www.sciencedirect.com/science/article/pii/S0042207X01001695

    Google Scholar 

  35. A. Szczepkowicz, A. Ciszewski, Surf. Sci. 515(2–3), 441 (2002). doi:10.1016/S0039-6028(02)01960-X. http://www.sciencedirect.com/science/article/pii/S003960280201960X

    Google Scholar 

  36. G. Antczak, R. Blaszczyszyn, T.E. Madey, Prog. Surf. Sci. 74(1–8), 81 (2003). doi:10.1016/j.progsurf.2003.08.007. http://www.sciencedirect.com/science/article/pii/S0079681603000686

    Google Scholar 

  37. J. Guan, R.A. Campbell, T.E. Madey, Surf. Sci. 341(3), 311 (1995). doi:10.1016/0039-6028(95)00741-5. http://www.sciencedirect.com/science/article/pii/0039602895007415

    Google Scholar 

  38. J.L. Pitters, R. Urban, C. Vesa, R.A. Wolkow, Ultramicroscopy 131, 56 (2013). doi:10.1016/j.ultramic.2013.03.013. http://www.sciencedirect.com/science/article/pii/S0304399113000831

    Google Scholar 

  39. J.L. Pitters, R. Urban, R.A. Wolkow, J. Chem. Phys. 136(15) (2012). Artn 154704. doi:10.1063/1.3702209

    Google Scholar 

  40. M. Rezeq, J.L. Pitters, R.A. Wolkow, J. Chem. Phys. 124, 204716 (2006)

    Article  ADS  Google Scholar 

  41. M. Rezeq, J. Pitters, R. Wolkow, J. Scann. Probe Microsc. 2(1), 1 (2007). doi:10.1166/jspm.2007.003

    Article  Google Scholar 

  42. R. Urban, J.L. Pitters, R.A. Wolkow, Ultramicroscopy 122, 60 (2012)

    Article  Google Scholar 

  43. J. Onoda, S. Mizuno, Appl. Surf. Sci. 257(20), 8427 (2011). doi:10.1016/j.apsusc.2011.04.124

    Article  ADS  Google Scholar 

  44. J. Onoda, S. Mizuno, H. Ago, Surf. Sci. 604(13–14), 1094 (2010). doi:10.1016/j.susc.2010.03.019

    Google Scholar 

  45. F. Rahman, J. Onoda, K. Imaizumi, S. Mizuno, Surf. Sci. 602(12), 2128 (2008). doi:10.1016/j.susc.2008.04.034

    Article  ADS  Google Scholar 

  46. Y. Sugiura, H. Liu, T. Iwata, S. Nagai, K. Kajiwara, K. Asaka, Y. Saito, K. Hata, e-J. Surf. Sci. Nanotechnol. 9, 344 (2011). doi:10.1380/ejssnt.2011.344

    Article  Google Scholar 

  47. G.R. Hanson, B.M. Siegel, J. Vac. Sci. Technol. 16, 1875 (1979)

    Article  ADS  Google Scholar 

  48. P.R. Schwoebel, G.R. Hanson, J. Vac. Sci. Technol. B 3, 214 (1985)

    Article  Google Scholar 

  49. T. Sakata, K. Kumagai, M. Naitou, I. Watanabe, Y. Ohhashi, Yhashi, O. Hosoda, Y. Kokubo, K. Tanaka, J. Vac. Sci. Technol. B 10, 2842 (1992)

    Google Scholar 

  50. H. Hiroshima, M. Komuro, M. Konishi, T. Tsumori, Jpn. J. Appl. Phys. 31(Part 1, No. 12B), 4492 (1992). doi:10.7567/JJAP.31.4492. http://jjap.jsap.jp/link?JJAP/31/4492/

  51. K. Edinger, V. Yun, J. Melngailis, J. Orloff, G. Magera, J. Vac. Sci. Technol. B 15, 2365 (1997)

    Article  Google Scholar 

  52. B. Ward, J. Notte, N. Economou, J. Vac. Sci. Technol. B 24, 2871 (2006)

    Article  Google Scholar 

  53. H.S. Kuo, I.S. Hwang, T.Y. Fu, Y.S. Hwang, Y.H. Lu, C.Y. Lin, J.L. Hou, T.T. Tsong, Nanotechnology 20, 335701 (2009)

    Article  ADS  Google Scholar 

  54. Y. Kobayashi, Y. Sugiyama, Y. Morikawa, K. Kajiwara, K. Hata, J. Vac. Sci. Technol. B 28 (2010). doi:10.1116/1.3360302

    Google Scholar 

  55. D. Langmuir, Proc. Inst. Radio Eng. 25(8), 977 (1937). doi:10.1109/JRPROC.1937.228419

    Google Scholar 

  56. P. Hawkes, E. Kasper, Principles of Electron Optics, Chapter 47, vol. 2 (Academic Press, London, San Diego, 1989)

    Google Scholar 

  57. M. Bronsgeest, J. Barth, L. Swanson, P. Kruit, J. Vac. Sci. Technol. B 26(3), 949 (2008)

    Article  Google Scholar 

  58. J. Witt, K. Müller, J. de Physique 47, c2 (1986)

    Google Scholar 

  59. J.C. Wiesner, T.E. Everhart, J. Appl. Phys. 44, 2140 (1973)

    Article  ADS  Google Scholar 

  60. J.C.H. Spence, W. Qian, M.P. Silverman, J. Vac. Sci. Technol. A 12, 542 (1994). doi:10.1116/1.579166

    Article  ADS  Google Scholar 

  61. J. Mulson, E.W. Müller, J. Chem. Phys. 38(11), 2615 (1963). doi:10.1063/1.1733560

    Article  ADS  Google Scholar 

  62. K. Rendulic, Z. Knor, Surf. Sci. 7, 205 (1967)

    Article  ADS  Google Scholar 

  63. E.W. Muller, T.T. Tsong, Field Ion Microscopy (Elsevier, New York, 1969)

    Google Scholar 

  64. E.A. Mason, E.W. McDaniel, Transport Properties of Ions in Gases, Chap. Appendix III: Tables of Properties Useful in the Estimation of Ionneutral Interaction Energies (Wiley-VCH Verlag GmbH & Co. KGaA, 2005), pp. 531–539. doi:10.1002/3527602852.app3. http://dx.doi.org/10.1002/3527602852.app3

  65. R.T. Lewis, R. Gomer, Surf. Sci. 26, 197 (1971)

    Article  ADS  Google Scholar 

  66. M. Benjamin, R. Jenkins, Proc. R. Soc. (London) A 176(A965), 0262 (1940)

    Google Scholar 

  67. R. Gomer, J. Chem. Phys. 20(11), 1772 (1952)

    Article  ADS  Google Scholar 

  68. J.D. Rose, J. Appl. Phys. 27(3), 215 (1956)

    Article  ADS  Google Scholar 

  69. Y. Chen, D. Seidman, Surf. Sci. 26, 61 (1971)

    Article  ADS  Google Scholar 

  70. M. Southon, D. Brandon, Philos. Mag. 8(88), 579 (1963)

    Article  ADS  Google Scholar 

  71. G. Gipson, H. Eaton, J. Appl. Phys. 51(10), 5537 (1980)

    Article  ADS  Google Scholar 

  72. K. Jousten, K. Bohringer, S. Kalbitzer, Appl. Phys. B 46, 313 (1988)

    Article  ADS  Google Scholar 

  73. J. Notte, F. Rahman, S. McVey, S. Tan, R. Livengood, Microsc. Microanal. 16(Supp. S2), 28 (2010)

    Google Scholar 

  74. R. Urban, J.L. Pitters, R.A. Wolkow, Appl. Phys. Lett. 100, 263105 (2012)

    Article  ADS  Google Scholar 

  75. N. Ernst, Surf. Sci. 219(1–2), 1 (1989)

    Article  ADS  Google Scholar 

  76. Y. Suchorski, W. Schmidt, J. Block, Appl. Surf. Sci. 76–77(2), 101 (1994)

    Article  Google Scholar 

  77. F. Rahman, J. Notte, R. Livengood, S. Tan, Ultramicroscopy 126, 10 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Technical support of Mark Salomons and Martin Cloutier is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Wolkow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Urban, R., Wolkow, R.A., Pitters, J.L. (2016). Single Atom Gas Field Ion Sources for Scanning Ion Microscopy. In: Hlawacek, G., Gölzhäuser, A. (eds) Helium Ion Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-41990-9_2

Download citation

Publish with us

Policies and ethics