Skip to main content

Leukocyte Kinetics and Migration in the Lungs

  • Chapter
  • First Online:
Hematologic Abnormalities and Acute Lung Syndromes

Part of the book series: Respiratory Medicine ((RM))

  • 844 Accesses

Abstract

Neutrophil recruitment into the alveolar air space is central to the inflammatory response in the lung. Unlike the systemic microcirculation, the pulmonary capillaries but not venules are the primary site of neutrophil recruitment into the inflamed air space. Neutrophils are larger in diameter than most pulmonary capillaries and are required to deform into an elliptical shape prior to entrance into a capillary segment. The time spent during deformation, entrance, and transit through the capillary network results in concentration of neutrophils within the pulmonary microcirculation. This chapter provides an overview of the molecular and biophysical mechanisms that regulate neutrophil margination in the lung microcirculation during homeostasis and recruitment into the air spaces during inflammation. Here, we describe neutrophil recruitment into the inflamed air spaces as a coordination of five sequential steps of capillary sequestration and retention, trans-luminal crawling, trans-endothelial migration, trans-interstitial migration, and trans-epithelial migration. Our current understanding of these five sequential steps is partially based on intravital microscopy studies performed in the nonpulmonary vascular beds of mice. Recently, intravital microscopy approaches that allow visualization of the pulmonary microcirculation in live mice have become available. Intravital microscopy studies of the lung should be conducted in mice to elucidate the molecular pathways that dictate neutrophil kinetics in the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fraser RG, Pare JAP. Structure and function of the lung: with emphasis on roentgenology. Philadelphia: Saunders; 1977. p. 2–4.

    Google Scholar 

  2. Burns AR, Smith CW, Walker DC. Unique structural features that influence neutrophil emigration into the lung. Physiol Rev. 2003;83(2):309–36.

    Article  CAS  PubMed  Google Scholar 

  3. Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014;15(7):602–11.

    Article  CAS  PubMed  Google Scholar 

  4. Doerschuk CM. Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation. 2001;8(2):71–88.

    Article  CAS  PubMed  Google Scholar 

  5. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest. 2012;122(8):2731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.

    Article  CAS  PubMed  Google Scholar 

  7. Doerschuk CM, Beyers N, Coxson HO, Wiggs B, Hogg JC. Comparison of neutrophil and capillary diameters and their relation to neutrophil sequestration in the lung. J Appl Physiol. 1993;74(6):3040–5.

    CAS  PubMed  Google Scholar 

  8. Hogg JC, McLean T, Martin BA, Wiggs B. Erythrocyte transit and neutrophil concentration in the dog lung. J Appl Physiol. 1988;65(3):1217–25.

    CAS  PubMed  Google Scholar 

  9. Lien DC, Wagner Jr WW, Capen RL, Haslett C, Hanson WL, Hofmeister SE, et al. Physiological neutrophil sequestration in the lung: visual evidence for localization in capillaries. J Appl Physiol. 1987;62(3):1236–43.

    CAS  PubMed  Google Scholar 

  10. Hogg JC, Doerschuk CM. Leukocyte traffic in the lung. Annu Rev Physiol. 1995;57:97–114.

    Article  CAS  PubMed  Google Scholar 

  11. Gebb SA, Graham JA, Hanger CC, Godbey PS, Capen RL, Doerschuk CM, et al. Sites of leukocyte sequestration in the pulmonary microcirculation. J Appl Physiol. 1995;79(2):493–7.

    CAS  PubMed  Google Scholar 

  12. Tanaka K, Koike Y, Shimura T, Okigami M, Ide S, Toiyama Y, et al. In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model. PLoS One. 2014;9(11):e111888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Looney MR, Thornton EE, Sen D, Lamm WJ, Glenny RW, Krummel MF. Stabilized imaging of immune surveillance in the mouse lung. Nat Methods. 2011;8(1):91–6.

    Article  CAS  PubMed  Google Scholar 

  14. Ley K, Mestas J, Pospieszalska MK, Sundd P, Groisman A, Zarbock A. Chapter 11. Intravital microscopic investigation of leukocyte interactions with the blood vessel wall. Methods Enzymol. 2008;445:255–79.

    Article  CAS  PubMed  Google Scholar 

  15. Hickey MJ, Westhorpe CL. Imaging inflammatory leukocyte recruitment in kidney, lung and liver—challenges to the multi-step paradigm. Immunol Cell Biol. 2013;91(4):281–9.

    Article  CAS  PubMed  Google Scholar 

  16. Bennewitz MF, Watkins SC, Sundd P. Quantitative intravital two-photon excitation microscopy reveals absence of pulmonary vaso-occlusion in unchallenged Sickle Cell Disease mice. Intra Vital. 2014;3(1):e29748.

    Google Scholar 

  17. Presson Jr RG, Brown MB, Fisher AJ, Sandoval RM, Dunn KW, Lorenz KS, et al. Two-photon imaging within the murine thorax without respiratory and cardiac motion artifact. Am J Pathol. 2011;179(1):75–82.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang Y, Yang G, Schmidt EP. In vivo measurement of the mouse pulmonary endothelial surface layer. J Vis Exp. 2013;72:e50322.

    PubMed  Google Scholar 

  19. Tabuchi A, Mertens M, Kuppe H, Pries AR, Kuebler WM. Intravital microscopy of the murine pulmonary microcirculation. J Appl Physiol. 2008;104(2):338–46.

    Article  PubMed  Google Scholar 

  20. Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012;18(8):1217–23.

    Article  CAS  PubMed  Google Scholar 

  21. Wiggs BR, English D, Quinlan WM, Doyle NA, Hogg JC, Doerschuk CM. Contributions of capillary pathway size and neutrophil deformability to neutrophil transit through rabbit lungs. J Appl Physiol. 1994;77(1):463–70.

    CAS  PubMed  Google Scholar 

  22. Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol. 2008;295(3):L379–99.

    CAS  Google Scholar 

  23. Looney MR, Bhattacharya J. Live imaging of the lung. Annu Rev Physiol. 2014;76:431–45.

    Article  CAS  PubMed  Google Scholar 

  24. Cella F, Diaspro A. Two-photon excitation microscopy: a superb wizard for fluorescence imaging. In: Diaspro A, editor. Nanoscopy and multidimensional optical fluorescence microscopy. Boca Raton, FL: CRC Press; 2010. 7-1-12.

    Google Scholar 

  25. Faust N, Varas F, Kelly LM, Heck S, Graf T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood. 2000;96(2):719–26.

    CAS  PubMed  Google Scholar 

  26. Hasenberg A, Hasenberg M, Mann L, Neumann F, Borkenstein L, Stecher M, et al. Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes. Nat Methods. 2015;12(5):445–52.

    Article  CAS  PubMed  Google Scholar 

  27. Yipp BG, Kubes P. Antibodies against neutrophil LY6G do not inhibit leukocyte recruitment in mice in vivo. Blood. 2013;121(1):241–2.

    Article  CAS  PubMed  Google Scholar 

  28. Kreisel D, Nava RG, Li W, Zinselmeyer BH, Wang B, Lai J, et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc Natl Acad Sci U S A. 2010;107(42):18073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weibel ER. The pathway for oxygen: structure and function in the mammalian respiratory system. Cambridge, MA: Harvard University Press; 1984. 425 p.

    Google Scholar 

  30. Walker DC, Behzad AR, Chu F. Neutrophil migration through preexisting holes in the basal laminae of alveolar capillaries and epithelium during streptococcal pneumonia. Microvasc Res. 1995;50(3):397–416.

    Article  CAS  PubMed  Google Scholar 

  31. Townsley MI. Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol. 2012;2(1):675–709.

    PubMed  PubMed Central  Google Scholar 

  32. Guntheroth WG, Luchtel DL, Kawabori I. Pulmonary microcirculation: tubules rather than sheet and post. J Appl Physiol. 1982;53(2):510–5.

    CAS  PubMed  Google Scholar 

  33. Hogg JC. Neutrophil kinetics and lung injury. Physiol Rev. 1987;67(4):1249–95.

    CAS  PubMed  Google Scholar 

  34. Bathe M, Shirai A, Doerschuk CM, Kamm RD. Neutrophil transit times through pulmonary capillaries: the effects of capillary geometry and fMLP-stimulation. Biophys J. 2002;83(4):1917–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang Y, Doerschuk CM, Kamm RD. Computational modeling of RBC and neutrophil transit through the pulmonary capillaries. J Appl Physiol. 2001;90:545–64.

    Article  CAS  PubMed  Google Scholar 

  36. Sundd P. Micropipette cell adhesion assay: a novel in vitro assay to model leukocyte adhesion in the pulmonary capillaries of the lung [Ph.D.]. Athens: Ohio University; 2007.

    Google Scholar 

  37. Staub NC, Schultz EL. Pulmonary capillary length in dogs, cat and rabbit. Respir Physiol. 1968;5(3):371–8.

    Article  CAS  PubMed  Google Scholar 

  38. Fenton BM, Wilson DW, Cokelet GR. Analysis of the effects of measured white blood cell entrance times on hemodynamics in a computer model of a microvascular bed. Pflugers Arch. 1985;403(4):396–401.

    Article  CAS  PubMed  Google Scholar 

  39. Evans E, Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J. 1989;56(1):151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tran-Son-Tay R, Needham D, Yeung A, Hochmuth RM. Time-dependent recovery of passive neutrophils after large deformation. Biophys J. 1991;60(4):856–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Evans E, Kukan B. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood. 1984;64(5):1028–35.

    CAS  PubMed  Google Scholar 

  42. Gabriele S, Benoliel AM, Bongrand P, Theodoly O. Microfluidic investigation reveals distinct roles for actin cytoskeleton and myosin II activity in capillary leukocyte trafficking. Biophys J. 2009;96(10):4308–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sundd P, Zou X, Goetz DJ, Tees DF. Leukocyte adhesion in capillary-sized. P-selectin-coated micropipettes. Microcirculation. 2008;15(2):109–22.

    Article  CAS  PubMed  Google Scholar 

  44. Shao JY, Hochmuth RM. The resistance to flow of individual human neutrophils in glass capillary tubes with diameters between 4.65 and 7.75 μm. Microcirculation. 1997;4(1):61–74.

    Article  CAS  PubMed  Google Scholar 

  45. Lien DC, Henson PM, Capen RL, Henson JE, Hanson WL, Wagner Jr WW, et al. Neutrophil kinetics in the pulmonary microcirculation during acute inflammation. Lab Invest. 1991;65(2):145–59.

    CAS  PubMed  Google Scholar 

  46. Aoki T, Suzuki Y, Nishio K, Suzuki K, Miyata A, Iigou Y, et al. Role of CD18-ICAM-1 in the entrapment of stimulated leukocytes in alveolar capillaries of perfused rat lungs. Am J Physiol Heart Circ Physiol. 1997;273(5):H2361–71.

    CAS  Google Scholar 

  47. Roller J, Wang Y, Rahman M, Schramm R, Laschke MW, Menger MD, et al. Direct in vivo observations of P-selectin glycoprotein ligand-1-mediated leukocyte-endothelial cell interactions in the pulmonary microvasculature in abdominal sepsis in mice. Inflamm Res. 2013;62(3):275–82.

    Article  CAS  PubMed  Google Scholar 

  48. Parthasarathi K, Ichimura H, Monma E, Lindert J, Quadri S, Issekutz A, et al. Connexin 43 mediates spread of Ca2+-dependent proinflammatory responses in lung capillaries. J Clin Invest. 2006;116(8):2193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bullard DC, Qin L, Lorenzo I, Quinlin WM, Doyle NA, Bosse R, et al. P-selectin/ICAM-1 double mutant mice: acute emigration of neutrophils into the peritoneum is completely absent but is normal into pulmonary alveoli. J Clin Invest. 1995;95(4):1782–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Doerschuk CM, Quinlan WM, Doyle NA, Bullard DC, Vestweber D, Jones ML, et al. The role of P-selectin and ICAM-1 in acute lung injury as determined using blocking antibodies and mutant mice. J Immunol. 1996;157(10):4609–14.

    CAS  PubMed  Google Scholar 

  51. Kuebler WM, Kuhnle GE, Groh J, Goetz AE. Contribution of selectins to leucocyte sequestration in pulmonary microvessels by intravital microscopy in rabbits. J Physiol. 1997;501(Pt 2):375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.

    Article  CAS  PubMed  Google Scholar 

  53. Doyle NA, Bhagwan SD, Meek BB, Kutkoski GJ, Steeber DA, Tedder TF, et al. Neutrophil margination, sequestration, and emigration in the lungs of L-selectin-deficient mice. J Clin Invest. 1997;99(3):526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anderson GJ, Roswit WT, Holtzman MJ, Hogg JC, Van Eeden SF. Effect of mechanical deformation of neutrophils on their CD18/ICAM-1-dependent adhesion. J Appl Physiol. 2001;91(3):1084–90.

    CAS  PubMed  Google Scholar 

  56. Doerschuk CM, Winn RK, Coxson HO, Harlan JM. CD18-Dependent and -independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J Immunol. 1990;144(6):2327–33.

    CAS  PubMed  Google Scholar 

  57. Devi S, Wang Y, Chew WK, Lima R, A-González N, Mattar CN, et al. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J Exp Med. 2013;210(11):2321–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41(5):694–707.

    Article  CAS  PubMed  Google Scholar 

  59. Reutershan J, Basit A, Galkina EV, Ley K. Sequential recruitment of neutrophils into lung and bronchoalveolar lavage fluid in LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2005;289(5):L807–15.

    Article  CAS  PubMed  Google Scholar 

  60. Rittirsch D, Flierl MA, Day DE, Nadeau BA, McGuire SR, Hoesel LM, et al. Acute lung injury induced by lipopolysaccharide is independent of complement activation. J Immunol. 2008;180(11):7664–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Andonegui G, Bonder CS, Green F, Mullaly SC, Zbytnuik L, Raharjo E, et al. Endothelium-derived toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest. 2003;111(7):1011–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Andonegui G, Zhou H, Bullard D, Kelly MM, Mullaly SC, McDonald B, et al. Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection. J Clin Invest. 2009;119(7):1921–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuebler WM, Borges J, Sckell A, Kuhnle GE, Bergh K, Messmer K, et al. Role of L-selectin in leukocyte sequestration in lung capillaries in a rabbit model of endotoxemia. Am J Respir Crit Care Med. 2000;161(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  64. Kubo H, Doyle NA, Graham L, Bhagwan SD, Quinlan WM, Doerschuk CM. L- and P-selectin and CD11/CD18 in intracapillary neutrophil sequestration in rabbit lungs. Am J Respir Crit Care Med. 1999;159(1):267–74.

    Article  CAS  PubMed  Google Scholar 

  65. Choudhury S, Wilson MR, Goddard ME, O'Dea KP, Takata M. Mechanisms of early pulmonary neutrophil sequestration in ventilator-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol. 2004;287(5):L902–10.

    Article  CAS  PubMed  Google Scholar 

  66. Suwa T, Hogg JC, Klut ME, Hards J, van Eeden SF. Interleukin-6 changes deformability of neutrophils and induces their sequestration in the lung. Am J Respir Crit Care Med. 2001;163(4):970–6.

    Article  CAS  PubMed  Google Scholar 

  67. Mulligan M, Miyasaka M, Tamatani T, Jones M, Ward P. Requirements for L-selectin in neutrophil-mediated lung injury in rats. J Immunol. 1994;152(2):832–40.

    CAS  PubMed  Google Scholar 

  68. Doerschuk CM. The role of CD18-mediated adhesion in neutrophil sequestration induced by infusion of activated plasma in rabbits. Am J Respir Cell Mol Biol. 1992;7(2):140–8.

    Article  CAS  PubMed  Google Scholar 

  69. Mulligan MS, Wilson GP, Todd RF, Smith CW, Anderson DC, Varani J, et al. Role of beta 1, beta 2 integrins and ICAM-1 in lung injury after deposition of IgG and IgA immune complexes. J Immunol. 1993;150(6):2407–17.

    CAS  PubMed  Google Scholar 

  70. Hellewell PG, Young SK, Henson PM, Worthen GS. Disparate role of the beta 2-integrin CD18 in the local accumulation of neutrophils in pulmonary and cutaneous inflammation in the rabbit. Am J Respir Cell Mol Biol. 1994;10(4):391–8.

    Article  CAS  PubMed  Google Scholar 

  71. Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest. 2006;116(12):3211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoshida K, Kondo R, Wang Q, Doerschuk CM. Neutrophil cytoskeletal rearrangements during capillary sequestration in bacterial pneumonia in rats. Am J Respir Crit Care Med. 2006;174(6):689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ramamoorthy C, Sasaki SS, Su DL, Sharar SR, Harlan JM, Winn RK. CD18 adhesion blockade decreases bacterial clearance and neutrophil recruitment after intrapulmonary E. coli, but not after S. aureus. J Leukoc Biol. 1997;61(2):167–72.

    CAS  PubMed  Google Scholar 

  74. Kumasaka T, Doyle NA, Quinlan WM, Graham L, Doerschuk CM. Role of CD 11/CD 18 in neutrophil emigration during acute and recurrent Pseudomonas aeruginosa-induced pneumonia in rabbits. Am J Pathol. 1996;148(4):1297–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Qin L, Quinlan WM, Doyle NA, Graham L, Sligh JE, Takei F, et al. The roles of CD11/CD18 and ICAM-1 in acute Pseudomonas aeruginosa-induced pneumonia in mice. J Immunol. 1996;157(11):5016–21.

    CAS  PubMed  Google Scholar 

  76. Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol. 2014;306(3):L217–30.

    CAS  Google Scholar 

  77. Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013;122(16):2784–94.

    Article  CAS  PubMed  Google Scholar 

  78. Ortiz-Munoz G, Mallavia B, Bins A, Headley M, Krummel MF, Looney MR. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood. 2014;124(17):2625–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest. 2012;122(7):2661–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liang J, Jung Y, Tighe RM, Xie T, Liu N, Leonard M, et al. A macrophage subpopulation recruited by CC chemokine ligand-2 clears apoptotic cells in noninfectious lung injury. Am J Physiol. 2012;302(9):L933–40.

    CAS  Google Scholar 

  81. Bratton DL, Henson PM. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol. 2011;32(8):350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Basit A, Reutershan J, Morris MA, Solga M, Rose Jr CE, Ley K. ICAM-1 and LFA-1 play critical roles in LPS-induced neutrophil recruitment into the alveolar space. Am J Physiol. 2006;291(2):L200–7.

    CAS  Google Scholar 

  83. Moore KL, Eaton SF, Lyons DE, Lichenstein HS, Cummings RD, McEver RP. The P-selectin glycoprotein ligand form human neutrophils displays sialylated, fucosylated. O-linked poly-N-acetyllactosamine. J Biol Chem. 1994;269(37):23318–27.

    CAS  PubMed  Google Scholar 

  84. Moore KL, Patel KD, Bruehl RE, Li F, Johnson DA, Lichenstein HS, et al. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol. 1995;128:661–71.

    Article  CAS  PubMed  Google Scholar 

  85. Burns AR, Takei F, Doerschuk CM. Quantitation of ICAM-1 expression in mouse lung during pneumonia. J Immunol. 1994;153(7):3189–98.

    CAS  PubMed  Google Scholar 

  86. Mulligan M, Watson S, Fennie C, Ward P. Protective effects of selectin chimeras in neutrophil-mediated lung injury. J Immunol. 1993;151(11):6410–7.

    CAS  PubMed  Google Scholar 

  87. Mulligan MS, Polley MJ, Bayer RJ, Nunn MF, Paulson JC, Ward PA. Neutrophil-dependent acute lung injury. Requirement for P-selectin (GMP-140). J Clin Invest. 1992;90(4):1600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kumasaka T, Quinlan WM, Doyle NA, Condon TP, Sligh J, Takei F, et al. Role of the intercellular adhesion molecule-1(ICAM-1) in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, anti-ICAM-1 monoclonal antibodies, and ICAM-1 mutant mice. J Clin Invest. 1996;97(10):2362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kandasamy K, Sahu G, Parthasarathi K. Real-time imaging reveals endothelium-mediated leukocyte retention in LPS-treated lung microvessels. Microvasc Res. 2012;83(3):323–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mulligan MS, Varani J, Warren JS, Till GO, Smith CW, Anderson DC, et al. Roles of beta 2 integrins of rat neutrophils in complement- and oxygen radical-mediated acute inflammatory injury. J Immunol. 1992;148(6):1847–57.

    CAS  PubMed  Google Scholar 

  91. Motosugi H, Quinlan WM, Bree M, Doerschuk CM. Role of CD11b in focal acid-induced pneumonia and contralateral lung injury in rats. Am J Respir Crit Care Med. 1998;157(1):192–8.

    Article  CAS  PubMed  Google Scholar 

  92. Motosugi H, Graham L, Noblitt TW, Doyle N, Quinlan WM, Li Y, et al. Changes in neutrophil actin and shape during sequestration induced by complement fragments in rabbits. Am J Pathol. 1996;149(5):963–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res. 2015;107(3):331–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang N. Electron microscopy in diagnostic pathology. Nonneoplastic disease. In: Schraufnagel D, editor. Electron microscopy of the lung. Lung biology in health and disease, vol. 48. New York: Dekker; 1990. p. 429–90.

    Google Scholar 

  95. Kiefmann R, Heckel K, Schenkat S, Dorger M, Goetz AE. Role of p-selectin in platelet sequestration in pulmonary capillaries during endotoxemia. J Vasc Res. 2006;43(5):473–81.

    Article  CAS  PubMed  Google Scholar 

  96. Asaduzzaman M, Lavasani S, Rahman M, Zhang S, Braun OO, Jeppsson B, et al. Platelets support pulmonary recruitment of neutrophils in abdominal sepsis. Crit Care Med. 2009;37(4):1389–96.

    Article  PubMed  Google Scholar 

  97. Asaduzzaman M, Rahman M, Jeppsson B, Thorlacius H. P-selectin glycoprotein-ligand-1 regulates pulmonary recruitment of neutrophils in a platelet-independent manner in abdominal sepsis. Br J Pharmacol. 2009;156(2):307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shao HZ, Qin BY. rPSGL-1-Ig, a recombinant PSGL-1-Ig fusion protein, ameliorates LPS-induced acute lung injury in mice by inhibiting neutrophil migration. Cell Mol Biol. 2015;61(1):1–6.

    PubMed  Google Scholar 

  99. Hattori R, Hamilton K, Fugate R, McEver R, Sims P. Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J Biol Chem. 1989;264(14):7768–71.

    CAS  PubMed  Google Scholar 

  100. Sreeramkumar V, Adrover JM, Ballesteros I, Cuartero MI, Rossaint J, Bilbao I, et al. Neutrophils scan for activated platelets to initiate inflammation. Science. 2014;346(6214):1234–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hyun YM, Sumagin R, Sarangi PP, Lomakina E, Overstreet MG, Baker CM, et al. Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels. J Exp Med. 2012;209(7):1349–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med. 2006;203(12):2569–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Burns A, Bowden R, Abe Y, Walker D, Simon S, Entman M, et al. P-selectin mediates neutrophil adhesion to endothelial cell borders. J Leukoc Biol. 1999;65(3):299–306.

    CAS  PubMed  Google Scholar 

  104. Burns AR, Walker DC, Brown ES, Thurmon LT, Bowden RA, Keese CR, et al. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentiallly at tricellular corners. J Immunol. 1997;159:2893–903.

    CAS  PubMed  Google Scholar 

  105. Halai K, Whiteford J, Ma B, Nourshargh S, Woodfin A. ICAM-2 facilitates luminal interactions between neutrophils and endothelial cells in vivo. J Cell Sci. 2014;127(Pt 3):620–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Walker DC, MacKenzie A, Hosford S. The structure of the tricellular region of endothelial tight junctions of pulmonary capillaries analyzed by freeze-fracture. Microvasc Res. 1994;48(3):259–81.

    Article  CAS  PubMed  Google Scholar 

  107. Gerwin N, Gonzalo JA, Lloyd C, Coyle AJ, Reiss Y, Banu N, et al. Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2 deficient mice results in extended hyperresponsiveness. Immunity. 1999;10(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  108. Muller WA. The regulation of transendothelial migration: new knowledge and new questions. Cardiovasc Res. 2015;107(3):310–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Woodfin A, Voisin MB, Beyrau M, Colom B, Caille D, Diapouli FM, et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol. 2011;12(8):761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Burns AR, Bowden RA, MacDonell SD, Walker DC, Odebunmi TO, Donnachie EM, et al. Analysis of tight junctions during neutrophil transendothelial migration. J Cell Sci. 2000;113(Pt 1):45–57.

    CAS  PubMed  Google Scholar 

  111. Carman CV, Springer TA. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol. 2004;167(2):377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dejana E. Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol. 2004;5(4):261–70.

    Article  CAS  PubMed  Google Scholar 

  113. Simionescu N, Simionescu M, Palade GE. Open junctions in the endothelium of the postcapillary venules of the diaphragm. J Cell Biol. 1978;79(1):27–44.

    Article  CAS  PubMed  Google Scholar 

  114. Simionescu N, Simionescu M, Palade GE. Structural basis of permeability in sequential segments of the microvasculature of the diaphragm. I. Bipolar microvascular fields. Microvasc Res. 1978;15(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  115. Marchesi VT, Florey HW. Electron micrographic observations on the emigration of leucocytes. Q J Exp Physiol Cogn Med Sci. 1960;45:343–8.

    CAS  PubMed  Google Scholar 

  116. Huang MT, Larbi KY, Scheiermann C, Woodfin A, Gerwin N, Haskard DO, et al. ICAM-2 mediates neutrophil transmigration in vivo: evidence for stimulus specificity and a role in PECAM-1-independent transmigration. Blood. 2006;107(12):4721–7.

    Article  CAS  PubMed  Google Scholar 

  117. Schmidt EP, Lee WL, Zemans RL, Yamashita C, Downey GP. On, around, and through: neutrophil-endothelial interactions in innate immunity. Physiology. 2011;26(5):334–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang Q, Pfeiffer 2nd GR, Stevens T, Doerschuk CM. Lung microvascular and arterial endothelial cells differ in their responses to intercellular adhesion molecule-1 ligation. Am J Respir Crit Care Med. 2002;166(6):872–7.

    Article  PubMed  Google Scholar 

  119. Huang AJ, Manning JE, Bandak TM, Ratau MC, Hanser KR, Silverstein SC. Endothelial cell cytosolic free calcium regulates neutrophil migration across monolayers of endothelial cells. J Cell Biol. 1993;120(6):1371–80.

    Article  CAS  PubMed  Google Scholar 

  120. Martinelli R, Gegg M, Longbottom R, Adamson P, Turowski P, Greenwood J. ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration. Mol Biol Cell. 2009;20(3):995–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Allingham MJ, van Buul JD, Burridge K. ICAM-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. J Immunol. 2007;179(6):4053–64.

    Article  CAS  PubMed  Google Scholar 

  122. Kang I, Wang Q, Eppell SJ, Marchant RE, Doerschuk CM. Effect of neutrophil adhesion on the mechanical properties of lung microvascular endothelial cells. Am J Respir Cell Mol Biol. 2010;43(5):591–8.

    Article  CAS  PubMed  Google Scholar 

  123. Lessey-Morillon EC, Osborne LD, Monaghan-Benson E, Guilluy C, O'Brien ET, Superfine R, et al. The RhoA guanine nucleotide exchange factor, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration. J Immunol. 2014;192(7):3390–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tasaka S, Koh H, Yamada W, Shimizu M, Ogawa Y, Hasegawa N, et al. Attenuation of endotoxin-induced acute lung injury by the Rho-associated kinase inhibitor, Y-27632. Am J Respir Cell Mol Biol. 2005;32(6):504–10.

    Article  CAS  PubMed  Google Scholar 

  125. Watson RL, Buck J, Levin LR, Winger RC, Wang J, Arase H, et al. Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration. J Exp Med. 2015;212(7):1021–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wessel F, Winderlich M, Holm M, Frye M, Rivera-Galdos R, Vockel M, et al. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat Immunol. 2014;15(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  127. Vestweber D. Relevance of endothelial junctions in leukocyte extravasation and vascular permeability. Ann N Y Acad Sci. 2012;1257:184–92.

    Article  CAS  PubMed  Google Scholar 

  128. Kaynar AM, Houghton AM, Lum EH, Pitt BR, Shapiro SD. Neutrophil elastase is needed for neutrophil emigration into lungs in ventilator-induced lung injury. Am J Respir Cell Mol Biol. 2008;39(1):53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mackarel AJ, Cottell DC, Russell KJ, FitzGerald MX, O'Connor CM. Migration of neutrophils across human pulmonary endothelial cells is not blocked by matrix metalloproteinase or serine protease inhibitors. Am J Respir Cell Mol Biol. 1999;20(6):1209–19.

    Article  CAS  PubMed  Google Scholar 

  130. Huber AR, Weiss SJ. Disruption of the subendothelial basement membrane during neutrophil diapedesis in an in vitro construct of a blood vessel wall. J Clin Invest. 1989;83(4):1122–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Belaaouaj A, McCarthy R, Baumann M, Gao Z, Ley TJ, Abraham SN, et al. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med. 1998;4(5):615–8.

    Article  CAS  PubMed  Google Scholar 

  132. Betsuyaku T, Shipley JM, Liu Z, Senior RM. Neutrophil emigration in the lungs, peritoneum, and skin does not require gelatinase B. Am J Respir Cell Mol Biol. 1999;20(6):1303–9.

    Article  CAS  PubMed  Google Scholar 

  133. Hirche TO, Atkinson JJ, Bahr S, Belaaouaj A. Deficiency in neutrophil elastase does not impair neutrophil recruitment to inflamed sites. Am J Respir Cell Mol Biol. 2004;30(4):576–84.

    Article  CAS  PubMed  Google Scholar 

  134. Behzad AR, Chu F, Walker DC. Fibroblasts are in a position to provide directional information to migrating neutrophils during pneumonia in rabbit lungs. Microvasc Res. 1996;51(3):303–16.

    Article  CAS  PubMed  Google Scholar 

  135. Burns AR, Simon SI, Kukielka GL, Rowen JL, Lu H, Mendoza LH, et al. Chemotactic factors stimulate CD18-dependent canine neutrophil adherence and motility on lung fibroblasts. J Immunol. 1996;156(9):3389–401.

    CAS  PubMed  Google Scholar 

  136. Shang XZ, Issekutz AC. Beta 2 (CD18) and beta 1 (CD29) integrin mechanisms in migration of human polymorphonuclear leucocytes and monocytes through lung fibroblast barriers: shared and distinct mechanisms. Immunology. 1997;92(4):527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Meng H, Marchese MJ, Garlick JA, Jelaska A, Korn JH, Gailit J, et al. Mast cells induce T-cell adhesion to human fibroblasts by regulating intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression. J Invest Dermatol. 1995;105(6):789–96.

    Article  CAS  PubMed  Google Scholar 

  138. Burns JA, Issekutz TB, Yagita H, Issekutz AC. The alpha 4 beta 1 (very late antigen (VLA)-4, CD49d/CD29) and alpha 5 beta 1 (VLA-5, CD49e/CD29) integrins mediate beta 2 (CD11/CD18) integrin-independent neutrophil recruitment to endotoxin-induced lung inflammation. J Immunol. 2001;166(7):4644–9.

    Article  CAS  PubMed  Google Scholar 

  139. Ridger VC, Wagner BE, Wallace WA, Hellewell PG. Differential effects of CD18, CD29, and CD49 integrin subunit inhibition on neutrophil migration in pulmonary inflammation. J Immunol. 2001;166(5):3484–90.

    Article  CAS  PubMed  Google Scholar 

  140. Damiano VV, Cohen A, Tsang AL, Batra G, Petersen R. A morphologic study of the influx of neutrophils into dog lung alveoli after lavage with sterile saline. Am J Pathol. 1980;100(2):349–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Zemans RL, Colgan SP, Downey GP. Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol. 2009;40(5):519–35.

    Article  CAS  PubMed  Google Scholar 

  142. Aurrand-Lions M, Lamagna C, Dangerfield JP, Wang S, Herrera P, Nourshargh S, et al. Junctional adhesion molecule-C regulates the early influx of leukocytes into tissues during inflammation. J Immunol. 2005;174(10):6406–15.

    Article  CAS  PubMed  Google Scholar 

  143. Turner JR. “Putting the squeeze” on the tight junction: understanding cytoskeletal regulation. Semin Cell Dev Biol. 2000;11(4):301–8.

    Article  CAS  PubMed  Google Scholar 

  144. Jagels MA, Daffern PJ, Zuraw BL, Hugli TE. Mechanisms and regulation of polymorphonuclear leukocyte and eosinophil adherence to human airway epithelial cells. Am J Respir Cell Mol Biol. 1999;21(3):418–27.

    Article  CAS  PubMed  Google Scholar 

  145. McDonald RJ, St George JA, Pan LC, Hyde DM. Neutrophil adherence to airway epithelium is reduced by antibodies to the leukocyte CD11/CD18 complex. Inflammation. 1993;17(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  146. Celi A, Cianchetti S, Petruzzelli S, Carnevali S, Baliva F, Giuntini C. ICAM-1-independent adhesion of neutrophils to phorbol ester-stimulated human airway epithelial cells. Am J Physiol. 1999;277(3 Pt 1):L465–71.

    CAS  PubMed  Google Scholar 

  147. Tosi MF, Hamedani A, Brosovich J, Alpert SE. ICAM-1-independent, CD18-dependent adhesion between neutrophils and human airway epithelial cells exposed in vitro to ozone. J Immunol. 1994;152(4):1935–42.

    CAS  PubMed  Google Scholar 

  148. Wang Q, Teder P, Judd NP, Noble PW, Doerschuk CM. CD44 deficiency leads to enhanced neutrophil migration and lung injury in Escherichia coli pneumonia in mice. Am J Pathol. 2002;161(6):2219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sundd P, Gutierrez E, Koltsova EK, Kuwano Y, Fukuda S, Pospieszalska MK, et al. “Slings” enable neutrophil rolling at high shear. Nature. 2012;488(7411):399–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sundd P, Pospieszalska MK, Ley K. Neutrophil rolling at high shear: flattening, catch bond behavior, tethers and slings. Mol Immunol. 2013;55(1):59–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the 11SDG7340005 from the American Heart Association (P.S.) and the VMI startup funds (P.S.). M.F.B. is supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under the T32 training grant NHLBI 5T32 HL110849-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prithu Sundd PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sundd, P., Bennewitz, M.F. (2017). Leukocyte Kinetics and Migration in the Lungs. In: Lee, J., Donahoe, M. (eds) Hematologic Abnormalities and Acute Lung Syndromes. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-41912-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41912-1_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-41910-7

  • Online ISBN: 978-3-319-41912-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics