Skip to main content

Fracture Mechanics Methods to Assess the Lifetime of Thermoplastic Pipes

  • Chapter
  • First Online:
Deformation and Fracture Behaviour of Polymer Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 247))

Abstract

When performing lifetime estimations using extrapolation concepts, it is vital to estimate the uncertainties which always accompany accelerated testing methods. Uncertainties may arise from deviating parameters such as changes in environmental conditions, temperature, different loading ratios, chemicals such as stress cracking agents, etc. Only when these influences are known it is justifiable to go into lifetime calculations. Own studies showed, that fracture mechanics extrapolation concepts for accelerated prediction of PE pressure pipes using short-time fatigue tests provide valid results when compared to pre-notched internal pipe pressure tests. The use of a cracked round bar (CRB) specimen for linear elastic fracture mechanic (LEFM) tests improves the results compared to classical compact tension (CT) specimens, which tend to overestimate lifetimes. This can mainly be attributed to bigger plastic zone sizes which restrict slow crack growth (SCG) in CT specimens. Another advantage is the similarity of constraint and K I-development between a pipe and CRB specimens. Summarising, the extrapolation concept using short-term fatigue tests on CRB specimens provides a valuable and valid tool to perform lifetime estimations for pipe systems made from high-density polyethylene (PE-HD) pipe materials. Further steps in the development of the approach using cyclic CRB Tests are currently under evaluation. For example, the implementation of influences due to media is an important addition, to be able to cover the area of media and crude oil transportation. The impact of crack growth initiation is also a topic which has yet to be addressed. So far it has often been neglected in lifetime estimations due to complex testing procedures. Also the use of the cyclic CRB Test for different polymeric pipe materials is currently examined. Seeing that only about a third of all thermoplastic pipes is produced from PE-HD material this is a logical next step. Besides lifetime estimation, the use of the cyclic CRB Tests at R = 0.1 is also discussed for ISO-standardisation for material quality control. Good correlations with established methods support its claim as a precise and fast ranking tool for PE-HD pipe grades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EN ISO 9080 (2012): Plastics piping and ducting systems—Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolation

    Google Scholar 

  2. ASTM D 2837 (2013): Standard test method for obtaining hydrostatic design basis for thermoplastic pipe materials or pressure design basis for thermoplastic pipe products

    Google Scholar 

  3. Richard, K., Gaube, E., Diedrich, G.: Trinkwasserrohre aus Niederdruckpolyäthylen. Kunststoffe 49, 516–525 (1959)

    Google Scholar 

  4. Gaube, E., Gebler, H., Müller, W., Gondro, C.: Zeitstandfestigkeit und Alterung von Rohren aus HDPE. Kunststoffe 75, 412–415 (1985)

    Google Scholar 

  5. Lustiger, A.: Environmental stress cracking: the phenomenon and its utility. In: Browstow, W., Corneliussen, R.D. (eds.) Failure of Plastics, pp. 305–329. Carl Hanser, Munich (1986)

    Google Scholar 

  6. Kausch, H.H.: Polymer Fracture. Springer, Berlin (1987)

    Google Scholar 

  7. Ifwarson, M., Tränkner, T.: Gebrauchsdauer von Polyethylenrohren unter Temperatur und Druckbelastung. Kunststoffe 79 (198) 525–529

    Google Scholar 

  8. Lang, R.W.: Polymerphysikalische Ansätze zur Beschreibung des Deformations- und Versagensverhaltens von PE-Rohren. 3R Int. 36, 40–44 (1997)

    Google Scholar 

  9. Lang, R.W., Pinter, G., Balika, W.: Ein neues Konzept zur Nachweisführung für Nutzungsdauer und Sicherheit von PE-Druckrohren bei beliebiger Einbausituation. 3R Int. 44, 32–41 (2005)

    Google Scholar 

  10. Krishnaswamy, R.K.: Analysis of ductile and brittle failures from creep rupture testing of high-density polyethylene (HDPE) pipes. Polymer 46, 11664–11672 (2005)

    Article  Google Scholar 

  11. Barker, M.B., Bowman, J., Bevis, M.: The performance and causes of failure of polyethylene pipes subjected to constant and fluctuating internal pressure loadings. J. Mater. Sci. 18, 1095–1118 (1983)

    Article  Google Scholar 

  12. Stern, A.: Fracture Mechanical Characterization of the Long-Term Behavior of Polymers Under Static Loads. Ph.D. thesis, Montan University Leoben, Leoben (1995)

    Google Scholar 

  13. Pinter, G.: Rißwachstumsverhalten von PE-HD unter statischer Belastung. Ph.D. thesis, Montan University Leoben, Leoben (1999)

    Google Scholar 

  14. Böhm, L.L., Enderle, H.F., Fleissner, M.: High-density polyethylene pipe resins. Adv. Mater. 4, 234–238 (1992)

    Article  Google Scholar 

  15. Brown, N., Lu, X., Huang, Y.: The fundamental material parameters that govern slow crack growth in linear polyethylene. Plast. Rubber Compos. Process. Appl. 17, 255–258 (1992)

    Google Scholar 

  16. Egan, B.J., Delatycki, O.: The morphology, chain structure and fracture behaviour of high-density polyethylene. Part I: Fracture at a constant rate of deflection. J. Mater. Sci. 30, 3307–3318 (1995)

    Article  Google Scholar 

  17. Egan, B.J., Delatycki, O.: The morphology, chain structure and fracture behaviour of high-density polyethylene. Part II: Static fatigue fracture testing. J. Mater. Sci. 30, 3351–3357 (1995)

    Article  Google Scholar 

  18. Pinter, G., Lang, R.W.: Creep crack growth in high density polyethylene. In: Moore, D. R. (ed.): The Application of Fracture Mechanics to Polymers, Adhesives and Composites. ESIS Publication 33, Elsevier Science, Oxford (2004), pp. 47–54

    Google Scholar 

  19. Dörner, G.F.: Stabilisatoreinflüsse auf das Alterungs- und Zeitstandverhalten von Rohren aus PE-MD. Ph.D. thesis, Montan University Leoben, Leoben (1994)

    Google Scholar 

  20. Choi, B., Chudnovsky, A., Paradkar, R., Michie, W., Zhou, Z., Cham, P.: Experimental and theoretical investigation of stress corrosion crack (SCC) growth of polyethylene pipes. Polym. Degrad. Stab. 94, 859–867 (2009)

    Article  Google Scholar 

  21. Dugdale, D.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)

    Article  Google Scholar 

  22. Barenblatt, G.J.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  Google Scholar 

  23. Friedrich, K.: Crazes and shear bands in semi-crystalline thermoplastics. In: Kausch, H.H. (ed.) Crazing in Polymers. Advances in Polymer Science 52–53, pp. 225–274. Springer, Berlin (1983)

    Google Scholar 

  24. Lang, R.W.: Applicability of linear elastic fracture mechanics to fatigue in polymers and short-fiber composites. Ph.D. thesis, Lehigh University, Bethlehem (1984)

    Google Scholar 

  25. Kausch, H.H., Gensler, R., Grein, C., Plummer, C.J.G., Scaramuzzino, P.: Crazing in semicrystalline thermoplastics. J. Macromol. Sci., Part B Phys. 38, 803–815 (1999)

    Article  Google Scholar 

  26. Kausch, H.H. (ed.) Crazing in Polymers, vols. 1 and 2. Advances in Polymer Science 52/53 and 91/92. Springer, Berlin (1983, 1990)

    Google Scholar 

  27. Lustiger, A., Ishikawa, N.: An analytical technique for measuring relative tie-molecule concentration in polyethylene. J. Polym. Sci., Part B: Polym. Phys. 29, 1047–1055 (1991)

    Article  Google Scholar 

  28. Pinter, G., Lang, R.W.: Effect of stabilization on creep crack growth in high-density polyethylene. J. Appl. Polym. Sci. 90, 3191–3207 (2003)

    Article  Google Scholar 

  29. Haager, M., Pinter, G., Lang, R.W.: Estimation of slow crack growth behavior in polyethylene after stepwise isothermal crystallization. Macromol. Symp. 217, 383–390 (2004)

    Article  Google Scholar 

  30. Frank, A., Pinter, G.: Evaluation of the applicability of the cracked round bar test as standardized PE-pipe ranking tool. Polym. Testing 33, 161–171 (2014)

    Article  Google Scholar 

  31. van der Stok, E., Scholten, F.: Strain hardening tests on PE pipe materials. In: Proceedings of Plastics Pipes XVI (Barcelona, 24.–26.09.2012). Barcelona (2012), 10 p

    Google Scholar 

  32. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  33. Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. 85, 528–534 (1963)

    Article  Google Scholar 

  34. Murakami, Y. (ed.): Stress Intensity Factors Handbook, 2nd edn. Pergamon Press, Oxford (1990)

    Google Scholar 

  35. Dixon, J.R., Pook, L.P.: Stress intensity factors calculated generally by the finite element technique. Nature 224, 166–167 (1969)

    Article  Google Scholar 

  36. Yamamoto, Y., Tokuda, N.: Determination of stress intensity factors in cracked plates by the finite element method. Int. J. Numer. Meth. Eng. 6, 427–439 (1973)

    Article  Google Scholar 

  37. Lang, R.W., Stern, A., Dörner, G.F.: Applicability and limitations of current lifetime prediction models for thermoplastics pipes under internal pressure. Angew. Makromol. Chem. 247, 131–145 (1997)

    Article  Google Scholar 

  38. Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications, 3rd edn. CRC Press, Taylor & Francis, Boca Raton (2005)

    Google Scholar 

  39. Krishnamachari, S.I.: Applied Stress Analysis of Plastics: A Mechanical Engineering Approach. Van Nostrand Reinhold, New York (1993)

    Book  Google Scholar 

  40. Frank, A.: Fracture mechanics based lifetime assessment and long-term failure behavior of polyethylene pressure pipes. Ph.D. thesis, Montan University Leoben, Leoben (2010)

    Google Scholar 

  41. Hutař, P., Ševčík, M., Náhlík, L., Mitev, I., Frank, A., Pinter, G.: Numerical simulation of the failure behavior of PE pressure pipes with additional loads. In: Proceedings of 67th Annual Technical Conference of the Society of Plastics Engineers 2009 (ANTEC 2009, Chicago, 22.–24.06.2009). Society of Plastics Engineers, Brookfield (2009), 2163–2168

    Google Scholar 

  42. Ševčík, M., Hutař, P., Zouhar, M., Náhlík, L.: Numerical estimation of the fatigue crack front shape for a specimen with finite thickness. Int. J. Fatigue 39, 75–80 (2012)

    Article  Google Scholar 

  43. Portch, D.J.: An investigation into the change of shape of fatigue cracks initiated at surface flaws. Report RD/B/N4645, Central Electricity Generating Board, Research Division, Berkeley Nuclear Laboratories, Berkeley (1979)

    Google Scholar 

  44. Hutař, P., Ševčík, M., Zouhar, M., Náhlík, L., Kučera, J.: The effect of residual stresses on crack shape in polymer pipes. In: Carpinteri, A. (ed.) Proceedings of the 4th International Conference on Crack Paths (CP 2012, Gaeta, 19.–21.09.2012). Gaeta (2012), pp. 489–496

    Google Scholar 

  45. Broek, D.: Elementary Engineering Fracture Mechanics, 3rd edn. Martinus Nijhoff, The Hague Boston London (1982)

    Book  Google Scholar 

  46. Broek, D.: The Practical Use of Fracture Mechanics, 2nd edn. Kluwer, Dordrecht Boston London (1989)

    Book  Google Scholar 

  47. Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials, 4th edn. Wiley, New York (1996)

    Google Scholar 

  48. Parsons, M., Stepanov, E.V., Hiltner, A., Baer, E.: Correlation of fatigue and creep slow crack growth in a medium density polyethylene pipe material. J. Mater. Sci. 35, 2659–2674 (2000)

    Article  Google Scholar 

  49. Favier, V., Giroud, T., Strijko, E., Hiver, J., G’Sell, C., Hellinckx, S., Goldberg, A.: Slow crack propagation in polyethylene under fatigue at controlled stress intensity. Polymer 43, 1375–1382 (2002)

    Article  Google Scholar 

  50. Pinter, G., Haager, M., Balika, W., Lang, R.W.: Fatigue crack growth in PE-HD pipe grades. Plast., Rubber Compos. 34, 25–33 (2005)

    Article  Google Scholar 

  51. Balika, W., Pinter, G., Lang, R.W.: Systematic investigations of fatigue crack growth behavior of a PE-HD pipe grade in through-thickness direction. J. Appl. Polym. Sci. 103, 1745–1758 (2007)

    Article  Google Scholar 

  52. Majer, Z., Hutař, P., Frank, A., Ševčík, M., Zouhar, M., Pinter, G., Náhlík, L.: Point load effect on the buried polyolefin pipes lifetime. Polym. Eng. Sci. 56, 79–86 (2016)

    Article  Google Scholar 

  53. Bhattacharya, S.K., Brown, N.: Micromechanisms of crack initiation in thin films and thick sections of polyethylene. J. Mater. Sci. 19, 2519–2532 (1984)

    Article  Google Scholar 

  54. O’Connell, P.A., Bonner, M.J., Duckett, R.A., Ward, I.M.: The relationship between slow crack propagation and tensile creep behaviour in polyethylene. Polymer 36, 2355–2362 (1995)

    Article  Google Scholar 

  55. Kausch, H.H.: Energy considerations for crack growth in thermoplastics. Kunststoffe 66, 538–544 (1976)

    Google Scholar 

  56. Balika, W.: Rissausbreitung in Kunststoff-Rohrwerkstoffen unter statischer und zyklischer Belastung: Vergleich kommerzieller Rohrwerkstoffklassen und Einfluss der Werk-stoff-mikro struktur. Ph.D. thesis, Montan University Leoben, Leoben (2003)

    Google Scholar 

  57. Chan, M.K.V., Williams, J.G.: Slow stable crack growth in high density polyethylenes. Polymer 24, 234–244 (1983)

    Article  Google Scholar 

  58. Hamouda, H.B.H., Simoes-betbeder, M., Grillon, F., Blouet, P., Billon, N., Piques, R.: Creep damage mechanisms in polyethylene gas pipes. Polymer 54, 25–37 (2001)

    Google Scholar 

  59. Choi, B., Balika, W., Chudnovsky, A., Pinter, G., Lang, R.W.: The use of crack layer theory to predict the lifetime of the fatigue crack growth of high density polyethylene. Polym. Eng. Sci. 49, 1421–1428 (2009)

    Article  Google Scholar 

  60. Parsons, M., Stepanov, E.V., Hiltner, A., Baer, E.: Correlation of stepwise fatigue and creep slow crack growth in high density polyethylene. J. Mater. Sci. 34, 3315–3326 (1999)

    Article  Google Scholar 

  61. Shah, A., Stepanov, E.V., Capaccio, G., Hiltner, A., Baer, E.: Stepwise fatigue crack propagation in polyethylene resins of different molecular structure. J. Polym. Sci., Part B: Polym. Phys. 36, 2355–2369 (1998)

    Article  Google Scholar 

  62. Parsons, M., Stepanov, E.V., Hiltner, A., Baer, E.: Effect of strain rate on stepwise fatigue and creep slow crack growth in high density polyethylene. J. Mater. Sci. 35, 1857–1866 (2000)

    Article  Google Scholar 

  63. Shah, A., Stepanov, E.V., Hiltner, A., Baer, E., Klein, M.: Correlation of fatigue crack propagation in polyethylene pipe specimens of different geometries. Int. J. Fract. 84, 159–173 (1997)

    Article  Google Scholar 

  64. Shah, A., Stepanov, E.V., Klein, M., Hiltner, A., Baer, E.: Study of polyethylene pipe resins by a fatigue test that simulates crack propagation in a real pipe. J Mater. Sci. 33, 3313–3319 (1998)

    Article  Google Scholar 

  65. Hertzberg, R.W., Manson, J.A.: Fatigue of Engineering Plastics. Academic Press, New York (1980)

    Google Scholar 

  66. Irwin, G.R.: Plastic zone near a crack and fracture toughness. In: Proceedings of 7th Sagamore Ordnance Materials Research Conference (Raquette Lake, 16.–19.08.1960). Syracuse University, Syracuse (1960), IV-63

    Google Scholar 

  67. Brown, N.: A fundamental theory for slow crack growth in polyethylene. Polymer 36, 543–548 (1995)

    Article  Google Scholar 

  68. Braga, M., Rink, M., Pavan, A.: Variations in the fracture behaviour of polyethylene pipe materials induced by thermal treatments. Polymer 32, 3152–3161 (1991)

    Article  Google Scholar 

  69. Brown, N., Lu, X., Huang, Y., Qian, R.: Slow crack growth in polyethylene—a review. Makromol. Chem. Macromol. Symp. 41, 55–67 (1991)

    Article  Google Scholar 

  70. Haager, M., Zhou, W., Pinter, G., Chudnovsky, A.: Studies of creep and fatigue crack growth in HD-PE pipe materials. In: Proceedings of 64th Annual Technical Conference of the Society of Plastics Engineers (ANTEC 2005, Boston, 01.–05.05.2005). Society of Plastics Engineers, Bethel (2005), 3538–3542

    Google Scholar 

  71. Reynolds, P.T., Lawrence, C.C.: Mechanisms of deformation in the fatigue of polyethylene pipe. J. Mater. Sci. 28, 2277–2282 (1993)

    Article  Google Scholar 

  72. Haager, M.: Bruchmechanische Methoden zur beschleunigten Charakterisierung des langsamen Risswachstums von Polyethylen-Rohrwerkstoffen. Ph.D. thesis, Montan University Leoben, Leoben (2006)

    Google Scholar 

  73. Lang, R.W., Balika, W., Pinter, G.: Applicability of linear elastic fracture mechanics to fatigue in amorphous and semi-crystalline polymers. In: Moore, D.R. (ed.) The Application of Fracture Mechanics to Polymers, Adhesives and Composites. ESIS Publication 33, Elsevier, Amsterdam (2004), pp. 83–92

    Google Scholar 

  74. Pinter, G.: Slow Crack Growth in PE-HD under Static and Cyclic Loads. Habilitation thesis, Montan University Leoben, Leoben (2008)

    Google Scholar 

  75. Brown, N., Donofrio, J., Lu, X.: The transition between ductile and slow-crack-growth failure in polyethylene. Polymer 28, 1326–1330 (1987)

    Article  Google Scholar 

  76. Lu, X., Brown, N.: The transition from ductile to slow crack growth failure in a copolymer of polyethylene. J. Mater. Sci. 25, 411–416 (1990)

    Article  Google Scholar 

  77. Huang, Y., Brown, N.: The effect of molecular weight on slow crack growth in linear polyethylene homopolymers. J. Mater. Sci. 23, 3648–3655 (1988)

    Article  Google Scholar 

  78. Huang, Y., Brown, N.: The dependence of butyl branch density on slow crack growth in polyethylene: Kinetics. J. Polym. Sci., Part B: Polym. Phys. 28, 2007–2021 (1990)

    Article  Google Scholar 

  79. Huang, Y., Brown, N.: Dependence of slow crack growth in polyethylene on butyl branch density: morphology and theory. J. Polym. Sci., Part B: Polym. Phys. 29, 129–137 (1991)

    Article  Google Scholar 

  80. Lu, X., Qian, R., Brown, N.: Notchology—the effect of the notching method on the slow crack growth failure in a tough polyethylene. J. Mater. Sci. 26, 881–888 (1991)

    Article  Google Scholar 

  81. Ward, A.L., Lu, X., Huang, Y., Brown, N.: The mechanism of slow crack growth in polyethylene by an environmental stress cracking agent. Polymer 32, 2172–2178 (1991)

    Article  Google Scholar 

  82. Lu, X., Mcghie, A., Brown, N.: The dependence of slow crack growth in a polyethylene copolymer on test temperature and morphology. J. Polym. Sci., Part B: Polym. Phys. 30, 1207–1214 (1992)

    Article  Google Scholar 

  83. Expertise (Gutachten) No. K 14 450. Technologisches Gewerbemuseum (TGM), Vienna (1993)

    Google Scholar 

  84. Chudnovsky, A., Moet, A., Bankert, R.J., Takemori, M.T.: Effect of damage dissemination on crack propagation in polypropylene. J. Appl. Phys. 54, 5562–5567 (1983)

    Article  Google Scholar 

  85. Pinter, G., Haager, M., Balika, W., Lang, R.W.: Cyclic crack growth tests with CRB specimens for the evaluation of the long-term performance of PE pipe grades. Polym. Testing 26, 180–188 (2007)

    Article  Google Scholar 

  86. Pinter, G., Balika, W., Lang, R.W.: A correlation of creep and fatigue crack growth in high density poly(ethylene) at various temperatures. In: Remy, L., Petit, J. (eds.) Temperature–Fatigue Interaction. ESIS Publication 29, Elsevier, Amsterdam, pp. 267–275

    Google Scholar 

  87. Zhou, Z., Hiltner, A., Baer, E.: Predicting long-term creep failure of bimodal polyethylene pipe from short-term fatigue tests. J. Mater. Sci. 46, 174–182 (2011)

    Article  Google Scholar 

  88. Frank, A., Lang, R.W., Pinter, G.: Accelerated investigation of creep crack growth in polyethylene pipe grade materials by the use of fatigue tests on cracked round bar specimens. In: Proceedings of 66th Annual Technical Conference of the Society of Plastics Engineers (ANTEC 2008, Milwaukee, 04.–08.05.2008). Society of Plastics Engineers, Bethel (2008), pp. 2435–2439

    Google Scholar 

  89. Frank, A., Freimann, W., Pinter, G., Lang, R.W.: A fracture mechanics concept for the accelerated characterization of creep crack growth in PE-HD pipe grades. Eng. Fract. Mech. 76, 2780–2787 (2009)

    Article  Google Scholar 

  90. Ayyer, R., Hiltner, A., Baer, E.: A fatigue-to-creep correlation in air for application to environmental stress cracking of polyethylene. J. Mater. Sci. 42, 7004–7015 (2007)

    Article  Google Scholar 

  91. Nishimura, H., Narisawa, I.: Fatigue behavior of medium-density polyethylene pipes. Polym. Eng. Sci. 31, 399–403 (1991)

    Article  Google Scholar 

  92. Zhou, Y., Brown, N.: The mechanism of fatigue failure in a polyethylene copolymer. J. Polym. Sci., Part B: Polym. Phys. 30, 477–487 (1992)

    Article  Google Scholar 

  93. Janssen, R.P.M., Govaert, L.E., Meijer, H.E.H.: An analytical method to predict fatigue life of thermoplastics in uniaxial loading: sensitivity to wave type, frequency, and stress amplitude. Macromolecules 41, 2531–2540 (2008)

    Article  Google Scholar 

  94. Hertzberg, R.W., Manson, J.A., Skibo, M.D.: Frequency sensitivity of fatigue processes in polymeric solids. Polym. Eng. Sci. 15, 252–260 (1975)

    Article  Google Scholar 

  95. Wyzgoski, M.G., Novak, G.E., Simon, D.L.: Fatigue fracture of nylon polymers. J. Mater. Sci. 25, 4501–4510 (1990)

    Article  Google Scholar 

  96. Pegoretti, A., Ricco, T.: Fatigue crack propagation in polypropylene reinforced with short glass fibres. Compos. Sci. Technol. 59, 1055–1062 (1999)

    Article  Google Scholar 

  97. Frank, A., Redhead, A., Pinter, G.: The influence of test frequency and eccentric crack growth on cyclic CRB tests. In: Proceedings of 70th Annual Technical Conference of the Society of Plastics Engineers (ANTEC 2012, Orlando, 02.–04.04.2012). Society of Plastics Engineers, Bethel (2012), 1899–1904

    Google Scholar 

  98. Moskala, E.J.: Effects of mean stress and frequency on fatigue crack propagation in rubber-toughened polycarbonate/copolyester blends. J. Appl. Polym. Sci. 49, 53–64 (1993)

    Article  Google Scholar 

  99. Brown, H.R., Kramer, E.J., Bubeck, R.A.: Studies of craze fibril deformation during fatigue in polystyrene. J. Polym. Sci., Part B: Polym. Phys. 25, 1765–1778 (1987)

    Article  Google Scholar 

  100. Lang, R.W., Pinter, G., Balika, W., Haager, M.: A novel qualification concept for lifetime and safety assessment of PE pressure pipes for arbitrary installation conditions. In: Proceedings of Plastic Pipes XIII (Washington, 02.–05.10.2006). Washington (2006), 12 pages

    Google Scholar 

  101. Pinter, G., Lang, R.W., Haager, M.: A test concept for lifetime prediction of polyethylene pressure pipes. Monatshefte für Chemie 138, 347–355 (2007)

    Article  Google Scholar 

  102. Pinter, G., Haager, M., Lang, R.W.: Lifetime and safety assessment of PE pressure pipes based on fracture mechanics fatigue tests. In: Proceedings of 65th Annual Technical Conference of the Society of Plastics Engineers (ANTEC 2007, Cincinnati, 05.–10.05.2007). Society of Plastics Engineers, Bethel (2007), 2921–2925

    Google Scholar 

  103. Pinter, G., Arbeiter, F., Berger, I., Frank, A.: Correlation of fracture mechanics based lifetime prediction and internal pipe pressure tests. In: Proceedings of Plastic Pipes XVII (Chicago, 22.–24.09.2014). Chicago (2014), 10 pages

    Google Scholar 

  104. Freimann, W.: Charakterisierung des Risswachstumsverhaltens von Cracked Round Bar (CRB) Prüfkörpern auf Basis der Materialnachgiebigkeit. Master thesis. Montan University Leoben, Leoben (2008)

    Google Scholar 

  105. Redhead, A., Frank, A., Pinter, G.: Investigation of slow crack growth initiation in polyethylene pipe grades with accelerated cyclic tests. Eng. Fract. Mech. 101, 2–9 (2013)

    Article  Google Scholar 

  106. Frank, A., Pinter, G., Lang, R.W.: Lifetime prediction of polyethylene pipes based on an accelerated extrapolation concept for creep crack growth with fatigue tests on cracked round bar specimens. In: Proceedings of 67th Annual Technical Conference of the Society of Plastics Engineers (ANTEC 2009, Chicago, 22.–24.06.2009). Society of Plastics Engineers, Bethel (2009), 2169–2174

    Google Scholar 

  107. Frank, A., Hartl, A.M., Pinter, G., Lang, R.W.: Validation of an accelerated fracture mechanics extrapolation tool for lifetime prediction of PE pressure pipes. In: Proceedings of 68th Annual Technical Conference of the Society of Plastics Engineers (ANTEC 2010, Orlando, 16.–20.05.2010). Society of Plastics Engineers, Bethel (2010), 1638–1643

    Google Scholar 

  108. Schoeffl, P.F., Bradler, P.R., Lang, R.W.: Yielding and crack growth testing of polymers under severe liquid media conditions. Polym. Testing 40, 225–233 (2014)

    Article  Google Scholar 

  109. Schoeffl, P.F., Lang, R.W.: Effect of liquid oilfield-related media on slow crack growth behavior in polyethylene pipe grade materials. Int. J. Fatigue 72, 90–101 (2015)

    Article  Google Scholar 

  110. Arbeiter, F., Pinter, G., Frank, A.: Characterisation of quasi-brittle fatigue crack growth in pipe grade polypropylene block copolymer. Polym. Testing 37, 186–192 (2014)

    Article  Google Scholar 

  111. Market Study: Plastic Pipes—World. Ceresana Research, Constance (2011)

    Google Scholar 

  112. Frank, A., Berger, I., Arbeiter, F., Pinter, G.: Characterization of crack initiation and slow crack growth resistance of PE 100 and PE 100 RC pipe grades with cyclic cracked round bar (CRB) tests. In: Proceedings of Plastic Pipes XVII (Chicago, 22.–24.09.2014). Chicago (2014), 10 pages

    Google Scholar 

  113. ISO 18489 (2015): Polyethylene (PE) materials for piping systems—Determination of resistance to slow cracked growth under cyclic loading—Cracked Round Bar test method

    Google Scholar 

  114. Kratochvilla, T.R., Frank, A., Pinter, G.: Determination of slow crack growth behaviour of polyethylene pressure pipes with cracked round bar test. Polym. Testing 40, 299–303 (2014)

    Article  Google Scholar 

  115. Frank, A., Redhead, A., Kratochvilla, T., Dragaun, H., Pinter, G.: Accelerated material ranking with cyclic CRB tests. In: Proceedings of Plastic Pipes XVI (Barcelona, 24.–26.09.2012). Barcelona (2012), 10 pages

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Arbeiter, F., Pinter, G., Lang, R.W., Frank, A. (2017). Fracture Mechanics Methods to Assess the Lifetime of Thermoplastic Pipes. In: Grellmann, W., Langer, B. (eds) Deformation and Fracture Behaviour of Polymer Materials. Springer Series in Materials Science, vol 247. Springer, Cham. https://doi.org/10.1007/978-3-319-41879-7_3

Download citation

Publish with us

Policies and ethics