Skip to main content

The Intracortical Visual Prosthesis Project

  • Chapter
  • First Online:
Artificial Vision

Abstract

The possibility of engineering, testing, and deploying a cybernetic interface to the visual areas of the human brain has inspired scientists, biomedical engineers, clinicians, and science fiction writers. Implemented as a cortical visual prosthesis, visual perception might be provided to individuals with blindness. Based upon pioneering work in the late 1960’s, and the development of significant technology throughout the remainder of the twentieth century, the Intracortical Visual Prosthesis (ICVP) is being planned for clinical trial. Autonomous, wireless, 16-channel stimulator modules will be used to tile the dorsolateral surface of the human occipital lobe. Each module will contain 16 intracortical electrodes that penetrate the cortical surface and provide simulation currents to visual processing areas of the brain. Through the use of spatial and temporal integration, the expectation is that the brain will convert the artificial visual information into useful visual perceptions. While it is not expected that the ICVP will produce normal vision, prior work strongly suggests that the artificial visual perception may notably enhance the user’s ability to recognize objects and navigate, and improve overall quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bak M, Girvin JP, Hambrecht FT, Kufta CV, Loeb GE, Schmidt EM. Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput. 1990;28:257–9.

    Article  CAS  PubMed  Google Scholar 

  2. Bartlett JR, Doty RW. An exploration of the ability of macaques to detect microstimulation of the striate cortex. Acta Neurobiologiae Expermentalis (Warzawa). 1980;40:713–28.

    CAS  Google Scholar 

  3. Bradley DC, Troyk PR, Berg JA, Bak M, Cogan S, Erickson R, et al. Visuotopic mapping through a multichannel stimulating implant in primate V1. J Neurophysiol. 2005;93(3):1659–70.

    Article  CAS  PubMed  Google Scholar 

  4. Brindley GS. Sensory effects of electrical stimulation of the visual and paravisual cortex in man. In: Jung R, editor. Handbook of sensory physiology, vol. VII/3. Berlin: Springer; 1973. p. 583–94.

    Google Scholar 

  5. Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol (Lond). 1968;196:479–93.

    Article  CAS  Google Scholar 

  6. Brindley GS, Rushton DN. Observations on the representation of the visual field on the human occipital cortex. In: Hambrecht FT, Reswick JB, editors. Functional electrical stimulation: applications in neural prostheses. New York: Marcel Dekker; 1977. p. 261–76.

    Google Scholar 

  7. Brindley GS, Donaldson PEK, Falconer M, Rushton DN. The extent of the region of occipital cortex that when stimulated gives phosphenes fixed in the visual field. J Physiol (Lond). 1972;225:57P–8.

    Article  CAS  Google Scholar 

  8. Button J, Putnam T. Visual responses to cortical stimulation in the blind. J Iowa Med Soc. 1962;LII(1):17–21.

    Google Scholar 

  9. Dagnelie G, Yin VT, Hess D, Yang L. Phosphene mapping strategies for cortical visual prosthesis recipients. J Vis. 2003;3(9):222.

    Article  Google Scholar 

  10. Dagnelie G, Jeter PE, Adeyemo K, Rozanski C, Nkodo AF, Massof RW. Psychometric properties of the PLoVR ultra-low vision (ULV) questionnaire. Invest Ophthalmol Vis Sci. 2014;55(13):2150.

    Google Scholar 

  11. Dagnelie G, Barry MP, Adeyemo O, Jeter PE, Massof RW. Twenty questions: an adaptive version of the PLoVR ultra-low vision (ULV) questionnaire. Invest Ophthalmol Vis Sci. 2015;56(7):497.

    Google Scholar 

  12. DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci. 1996;93(6):2382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dobelle WH, Mladejovsky MG. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol (Lond). 1974;243:553–76.

    Article  CAS  Google Scholar 

  14. Dobelle WH, Mladejovsky MG, Girvin JP. Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science. 1974;183:440–4.

    Article  CAS  PubMed  Google Scholar 

  15. Dobelle WH, Mladejovsky MG, Evans JR, Roberts TS, Girvin JP. ‘Braille’ reading by a blind volunteer by visual cortex stimulation. Nature. 1976;259:111–2.

    Article  CAS  PubMed  Google Scholar 

  16. Fernandez E, Alfaro A, Tormos JM, Climent R, Martınez M, Vilanova H, Pascual-Leone A. Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. Brain Res Protoc. 2002;10(2):115–24.

    Article  CAS  Google Scholar 

  17. Finger RP, McSweeney SC, Deverell L, O'Hare F, Bentley SA, Luu CD, Ayton LN. Developing an instrumental activities of daily living tool as part of the low vision assessment of daily activities protocol developing the IADL-VLV. Invest Ophthalmol Vis Sci. 2014;55(12):8458–66.

    Article  PubMed  Google Scholar 

  18. Finger RP, Tellis B, Crewe J, Keeffe JE, Ayton LN, Guymer RH. Developing the Impact of Vision Impairment–Very Low Vision (IVI-VLV) questionnaire as part of the LoVADA protocol developing the IVI-VLV. Invest Ophthalmol Vis Sci. 2014;55(10):6150–8.

    Article  PubMed  Google Scholar 

  19. Flores LP. Occipital lobe morphological anatomy: anatomical and surgical aspects. Arq Neuropsiquiatr. 2002;60(3A):566–71.

    Article  PubMed  Google Scholar 

  20. Histed MH, Ni AM, Maunsell JH. Insights into cortical mechanisms of behavior from microstimulation experiments. Prog Neurobiol. 2013;103:115–30.

    Article  PubMed  Google Scholar 

  21. Holmes G. Disturbances of vision by cerebral lesions. Br J Ophthalmol. 1918;2(7):353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Horton JC, Hoyt WF. The representation of the visual field in human striate cortex: a revision of the classic Holmes map. Arch Ophthalmol. 1991;109(6):816–24.

    Article  CAS  PubMed  Google Scholar 

  23. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160(1):106–54.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaido T, Hoshida T, Taoka T, Sakaki T. Retinotopy with coordinates of lateral occipital cortex in humans. J Neurosurg. 2004;101(1):114–8.

    Article  PubMed  Google Scholar 

  25. Kaskhedikar GP, Yang L, Boucher T, Troyk P, Dagnelie G. Development of mapping methods with simulated phosphenes for implementation in intracortical visual prosthesis recipients. Invest Ophthalmol Vis Sci. 2015;56(7):4315.

    Google Scholar 

  26. Lee HW, Hong SB, Seo DW, Tae WS, Hong SC. Mapping of functional organization in human visual cortex electrical cortical stimulation. Neurology. 2000;54(4):849–54.

    Article  CAS  PubMed  Google Scholar 

  27. Levy I, Hasson U, Avidan G, Hendler T, Malach R. Center–periphery organization of human object areas. Nat Neurosci. 2001;4(5):533–9.

    CAS  PubMed  Google Scholar 

  28. McFadzean R, Brosnahan D, Hadley D, Mutlukan E. Representation of the visual field in the occipital striate cortex. Br J Ophthalmol. 1994;78(3):185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McFadzean RM, Hadley DM, Condon BC. The representation of the visual field in the occipital striate cortex. Neuro-Ophthalmol. 2002;27(1–3):55–78.

    Article  Google Scholar 

  30. Ni AM, Maunsell JH. Microstimulation reveals limits in detecting different signals from a local cortical region. Curr Biol. 2010;20(9):824–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. London: Churchill; 1954, p.116–26, 404–6.

    Google Scholar 

  32. Penfield W, Rasmussen T. The cerebral cortex in man. New York: Macmillan; 1950.

    Google Scholar 

  33. Pollen DA. Some perceptual effects of electrical stimulation of the visual cortex in man. In: Tower DB, editor. The nervous system, vol. 2: the clinical neurosciences. New York: Raven; 1975. p. 519–28.

    Google Scholar 

  34. Rushton DN, Brindley GS. Short- and long-term stability of cortical electrical phosphenes. In: Rose FC, editor. Physiological aspects of clinical neurology. Oxford: Blackwell; 1977. p. 123–53.

    Google Scholar 

  35. Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O'Rourke DK, Vallabhanath P. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain. 1996;119(Pt 2):507–22.

    Article  PubMed  Google Scholar 

  36. Shaw D. Method and means for aiding the blind. U.S. Patent no. 2,721,316; 1955.

    Google Scholar 

  37. Stensaas SS, Eddington DK, Dobelle WH. The topography and variability of the primary visual cortex in man. J Neurosurg. 1974;40:747–55.

    Article  CAS  PubMed  Google Scholar 

  38. Troyk PR, DeMichele GA. Inductively-coupled power and data link for neural prostheses using a class-E oscillator and FSK modulation. In Engineering in medicine and biology society, 2003. Proceedings of the 25th annual international conference of the IEEE. 2003a. vol. 4, p. 3376–9. IEEE.

    Google Scholar 

  39. Troyk P, Bak M, Berg J, Bradley D, Cogan S, Erickson R, Kufta C, McCreery D, Schmidt E, Towle V. A model for intracortical visual prosthesis research. Artif Organs. 2003b;27:1005–15.

    Google Scholar 

  40. Troyk PR, Bradley D, Bak M, Cogan S, Erickson R, Hu Z, Towle V. Intracortical visual prosthesis research-approach and progress. In Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the IEEE. 2006a. p. 7376–9.

    Google Scholar 

  41. Troyk PR, Detlefsen DEA, DeMichele GAD. A multifunctional neural electrode stimulation ASIC using NeuroTalk TM interface. In Engineering in medicine and biology society, 2006. EMBS'06. 28th annual international conference of the IEEE. 2006b. p. 2994–7. IEEE.

    Google Scholar 

  42. Wandell BA, Brewer AA, Dougherty RF. Visual field map clusters in human cortex. Philos Trans R Soc Lond B Biol Sci. 2005;360(1456):693–707.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip R. Troyk PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Troyk, P.R. (2017). The Intracortical Visual Prosthesis Project. In: Gabel, V. (eds) Artificial Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-41876-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41876-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41874-2

  • Online ISBN: 978-3-319-41876-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics