Skip to main content

Integrating Axiomatic and Analogical Reasoning

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9782))

Included in the following conference series:

Abstract

We present a computational model of a developing system with bounded rationality that is surrounded by an arbitrary number of symbolic domains. The system is fully automatic and makes continuous observations of facts emanating from those domains. The system starts from scratch and gradually evolves a knowledge base consisting of three parts: (1) a set of beliefs for each domain, (2) a set of rules for each domain, and (3) an analogy for each pair of domains. The learning mechanism for updating the knowledge base uses rote learning, inductive learning, analogy discovery, and belief revision. The reasoning mechanism combines axiomatic reasoning for drawing conclusions inside the domains, with analogical reasoning for transferring knowledge from one domain to another. Thus the reasoning processes may use analogies to jump back and forth between domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartha, P.: Analogy and analogical reasoning. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, fall 2013 edn. (2013)

    Google Scholar 

  2. CornuĂ©jols, A.: Analogie, principe d’économie et complexitĂ© algorithmique. Actes des 11Ăšmes JournĂ©es Françaises de l’Apprentissage (1996)

    Google Scholar 

  3. De La Tour, T.B., Peltier, N.: Analogy in automated deduction: a survey. In: Prade, H., Richard, G. (eds.) Computational Approaches to Analogical Reasoning: Current Trends. SCI, vol. 548, pp. 103–130. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  4. Falkenhainer, B., Forbus, K.D., Gentner, D.: The structure-mapping engine: Algorithm and examples. Artif. Intell. 41(1), 1–63 (1989)

    Article  MATH  Google Scholar 

  5. Gentner, D.: Structure-mapping: A theoretical framework for analogy*. Cogn. Sci. 7(2), 155–170 (1983)

    Article  Google Scholar 

  6. Gust, H., Krumnack, U., KĂŒhnberger, K.U., Schwering, A.: Analogical reasoning: A core of cognition. KI 22(1), 8–12 (2008)

    Google Scholar 

  7. Gust, H., KĂŒhnberger, K.U., Schmid, U.: Metaphors and heuristic-driven theory projection (hdtp). Theor. Comput. Sci. 354(1), 98–117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hodges, W.: Model theory, vol. 42. Cambridge University Press, New York (1993)

    Book  MATH  Google Scholar 

  9. Hofstadter, D.: Analogy as the core of cognition, presidential Lecture by Douglas Hofstadter at Stanford University, February 2006

    Google Scholar 

  10. Kitzelmann, E.: Inductive programming: a survey of program synthesis techniques. In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812, pp. 50–73. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Nizamani, A.R., Juel, J., Persson, U., StrannegĂ„rd, C.: Bounded cognitive resources and arbitrary domains. In: Bieger, J., Goertzel, B., Potapov, A. (eds.) AGI 2015. LNCS, vol. 9205, pp. 166–176. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  12. Phillips, S., Wilson, W.H.: Categorial compositionality: A category theory explanation for the systematicity of human cognition. PLoS Comput. Biol. 6(7), e1000858 (2010)

    Article  MathSciNet  Google Scholar 

  13. Phillips, S., Wilson, W.H.: Categorial compositionality ii: Universal constructions and a general theory of (quasi-) systematicity in human cognition. PLoS Comput. Biol. 7(8), e1002102 (2011)

    Article  MathSciNet  Google Scholar 

  14. PĂłlya, G.: Mathematics and plausible reasoning: Induction and analogy in mathematics, vol. 1. Princeton University Press, Princeton (1990)

    MATH  Google Scholar 

  15. Robinson, A., Voronkov, A.: Handbook of Automated Reasoning. Elsevier, San Diego (2001)

    MATH  Google Scholar 

  16. Schmidt, M., Krumnack, U., Gust, H., KĂŒhnberger, K.U.: Heuristic-driven theory projection: an overview. In: Prade, H., Richard, G. (eds.) Computational Approaches to Analogical Reasoning: Current Trends. SCI, vol. 548, pp. 163–194. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

Download references

Acknowledgement

This research was supported by The Swedish Research Council, grant 2012-1000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claes StrannegÄrd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

StrannegÄrd, C., Nizamani, A.R., Persson, U. (2016). Integrating Axiomatic and Analogical Reasoning. In: Steunebrink, B., Wang, P., Goertzel, B. (eds) Artificial General Intelligence. AGI 2016. Lecture Notes in Computer Science(), vol 9782. Springer, Cham. https://doi.org/10.1007/978-3-319-41649-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41649-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41648-9

  • Online ISBN: 978-3-319-41649-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics