Skip to main content

Some Facts About Operator-Splitting and Alternating Direction Methods

  • Chapter
  • First Online:
Splitting Methods in Communication, Imaging, Science, and Engineering

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

The main goal of this chapter is to give the reader a (relatively) brief overview of operator-splitting, augmented Lagrangian and ADMM methods and algorithms. Following a general introduction to these methods, we will give several applications in Computational Fluid Dynamics, Computational Physics, and Imaging. These applications will show the flexibility, modularity, robustness, and versatility of these methods. Some of these applications will be illustrated by the results of numerical experiments; they will confirm the capabilities of operator-splitting methods concerning the solution of problems still considered complicated by today standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aftalion, A.: Vortices in Bose-Einstein Condensates, Birkhäuser, Boston, MA (2006)

    MATH  Google Scholar 

  2. Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image reconstruction. Interfaces and Free Boundaries, 5, 63–82 (2003)

    Article  MATH  Google Scholar 

  3. Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Linear and Nonlinear Programing. Stanford University Press, Stanford, CA (1958)

    MATH  Google Scholar 

  4. Aujol, J.F.: Some first-order algorithms for total variation based image restoration. Journal of Mathematical Imaging and Vision, 34, 307–327 (2009)

    Article  MATH  Google Scholar 

  5. Bae, E., Lellmann, J., Tai, X.C.: Convex relaxations for a generalized Chan-Vese model. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.C. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 223–236. Springer, Berlin (2013)

    Chapter  Google Scholar 

  6. Bae, E., Tai, X.C.: Efficient global minimization methods for image segmentation models with four regions. Journal of Mathematical Imaging and Vision, 51, 71–97 (2015)

    Article  MATH  Google Scholar 

  7. Bae, E., Yuan, J., Tai, X.C.: Global minimization for continuous multiphase partitioning problems using a dual approach. International Journal of Computer Vision, 92, 112–129 (2011)

    Article  MATH  Google Scholar 

  8. Bae, E., Yuan, J., Tai, X.C., Boykov, Y.: A fast continuous max-flow approach to non-convex multilabeling problems. In: Bruhn, A., Pock, T., Tai, X.C. (eds.) Efficient Algorithms for Global Optimization Methods in Computer Vision, pp. 134–154. Springer, Berlin (2014)

    Chapter  Google Scholar 

  9. Bao, W., Jaksch, D., Markowich, P.A.: Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation. J. Comp. Phys., 187, 318–342 (2003)

    Article  MATH  Google Scholar 

  10. Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the Schrödinger equation in the semi-classical regime. J. Comp. Phys, 175, 487–524 (2002)

    Article  MATH  Google Scholar 

  11. Beale, J.T., Greengard, C.: Convergence of Euler-Stokes splitting of the Navier-Stokes equations. Communications on Pure and Applied Mathematics, 47 (8),1083–115 (1994)

    Article  MATH  Google Scholar 

  12. Beale, J.T., Greengard, C., Thomann, E.: Operator splitting for Navier-Stokes and Chorin-Marsden product formula. In: Vortex Flows and Related Numerical Methods, NATO ASI Series, Vol. 395, pp. 27–38. Springer-Netherlands (1993)

    Google Scholar 

  13. Beale, J.T., Majda, A.: Rates of convergence for viscous splitting of the Navier-Stokes equations. Mathematics of Computation, 37 (156), 243–259 (1981)

    Article  MATH  Google Scholar 

  14. Belytschko, T., Hughes, T.J.R.(editors): Computational Methods for Transient Analysis. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  15. Bertozzi, A.L., Greer, J.B.: Low curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes. Comm. Pure Appl. Math., 57, 764–790 (2004)

    Article  MATH  Google Scholar 

  16. Blanes, S., Moan, P.C.: Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods. J. Comp. Appl. Math., 142 (2), 313–330 (2002)

    Article  MATH  Google Scholar 

  17. Bonito, A., Glowinski, R.: On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in R 3: A computational approach. Commun. Pure Appl. Analysis, 13, 2115–2126 (2014)

    Article  MATH  Google Scholar 

  18. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3, 1–122 (2011)

    Article  MATH  Google Scholar 

  19. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 359–374 (2001)

    MATH  Google Scholar 

  20. Bredies, K.: Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty. In: Bruhn, A., Pock, T., Tai, X.C. (eds.) Efficient Algorithms for Global Optimization Methods in Computer Vision, pp. 44–77. Springer, Berlin (2014)

    Chapter  Google Scholar 

  21. Bredies, K., Pock, T., Wirth, B.: Convex relaxation of a class of vertex penalizing functionals. Journal of Mathematical Imaging and Vision, 47, 278–302 (2013)

    Article  MATH  Google Scholar 

  22. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision, 28, 151–167 (2007)

    Article  Google Scholar 

  23. Bristeau, M.O., Glowinski, R., Périaux, J.: Numerical methods for the Navier-Stokes equations. Application to the simulation of compressible and incompressible viscous flow. Computer Physics Reports, 6, 73–187 (1987)

    Google Scholar 

  24. Brito-Loeza, C., Chen, K.: On high-order denoising models and fast algorithms for vector-valued images. IEEE Transactions on Image Processing, 19, 1518–1527 (2010)

    Article  Google Scholar 

  25. Calder, J., Mansouri, A.,Yezzi, A.: Image sharpening via Sobolev gradient flows. SIAM Journal on Imaging Sciences, 3, 981–1014 (2010)

    Article  MATH  Google Scholar 

  26. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numerische Mathematik, 76, 167–188, (1997)

    Article  MATH  Google Scholar 

  27. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40, 120–145 (2011)

    Article  MATH  Google Scholar 

  28. Chan, R.H., Lanza, A., Morigi, S., Sgallari, F.: An adaptive strategy for the restoration of textured images using fractional order regularization. Numerical Mathematics: Theory, Methods & Applications, 6, 276–296 (2013)

    MATH  Google Scholar 

  29. Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math., 66, 1632–1648 (electronic) (2006)

    Google Scholar 

  30. Chan, T.F., Glowinski, R.: Finite Element Approximation and Iterative Solution of a Class of Mildly Nonlinear Elliptic Equations. Stanford report STAN-CS-78-674, Computer Science Department, Stanford University, Palo Alto, CA (1978)

    Google Scholar 

  31. Chan, T., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM Journal on Applied Mathematics, 62, 564–592 (2002)

    MATH  Google Scholar 

  32. Chan, T. F., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput., 22 (2), 503–516 (2000).

    Article  MATH  Google Scholar 

  33. Chan, T., Vese, L.A.: Active contours without edges. IEEE Trans Image Proc., 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  34. Chiche, A., Gilbert, J.C.: How the augmented Lagrangian algorithm can deal with an infeasible convex quadratic optimization problem. Journal of Convex Analysis, 22, 30 (2015)

    MATH  Google Scholar 

  35. Chorin, A.J.: Numerical study of slightly viscous flow. Journal of Fluid Mechanics, 57 (4), 785–796 (1973)

    Article  Google Scholar 

  36. Chorin, A.J., Hughes, T.J.R., McCracken, M.F., Marsden, J.E.: Product formulas and numerical algorithms. Com. Pure Appl. Math., 31, 205–256 (1978)

    Article  MATH  Google Scholar 

  37. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, PA (2002)

    Book  MATH  Google Scholar 

  38. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society, 277, 1–42 (1983)

    Article  MATH  Google Scholar 

  39. Cuesta, E., Kirane, M., Malik, S.A.: Image structure preserving denoising using generalized fractional time integrals. Signal Processing, 92, 553–563 (2012)

    Article  Google Scholar 

  40. Dahiya, D., Baskar, S., Coulouvrat, F.: Characteristic fast marching method for monotonically propagating fronts in a moving medium. SIAM J. Scient. Comp., 35, A1880–A1902 (2013)

    Article  MATH  Google Scholar 

  41. Dean, E.J., Glowinski, R.: On some finite element methods for the numerical simulation of incompressible viscous flow In: Gunzburger, M.D., Nicolaides, R.A. (eds.) Incompressible Computational Fluid Dynamics, pp. 109–150. Cambridge University Press, New York, NY (1993)

    Google Scholar 

  42. Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the Monge-Ampère equation in two dimensions. Electronic Transactions on Numerical Analysis, 22, 71–96 (2006)

    MATH  Google Scholar 

  43. Dean, E.J., Glowinski, R., Pan, T.W.: A wave equation approach to the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations. In: J.A. de Santo (ed.) Mathematical and Numerical Aspects of Wave Propagation, pp. 65–74. SIAM, Philadelphia, PA (1998)

    Google Scholar 

  44. Deiterding, R., Glowinski, R., Olivier, H., Poole, S.: A reliable split-step Fourier method for the propagation equation of ultra-fast pulses in single-mode optical fibers. J. Lightwave Technology, 31, 2008–2017 (2013)

    Article  Google Scholar 

  45. Delbos, F., Gilbert, J.C.: Global linear convergence of an augmented Lagrangian algorithm for solving convex quadratic optimization problems. Journal of Convex Analysis, 12, 45–69 (2005)

    MATH  Google Scholar 

  46. Delbos, F., Gilbert, J.C., Glowinski, R., Sinoquet, D.: Constrained optimization in seismic reflection tomography: A Gauss-Newton augmented Lagrangian approach. Geophys. J. Internat., 164, 670–684 (2006)

    Article  Google Scholar 

  47. Demkowicz, L., Oden, J.T., Rachowicz, W.: A new finite element method for solving compressible Navier-Stokes equations based on an operator splitting method and h-p adaptivity. Comp. Meth. Appl. Mech. Eng., 84 (3), 275–326 (1990)

    Article  MATH  Google Scholar 

  48. Descombes, S.: Convergence of splitting methods of high order for reaction-diffusion systems. Math. Comp., 70 (236), 1481–1501 (2001)

    Article  MATH  Google Scholar 

  49. Descombes, S., Schatzman, M.: Directions alternées d’ordre élevé en réaction-diffusion. C.R. Acad. Sci. Paris, Sér. I, Math., 321 (11), 1521–1524 (1995)

    Google Scholar 

  50. Descombes, S., Schatzman, M.: On Richardson extrapolation of Strang’s formula for reaction-diffusion equations. In: Equations aux Dérivées Partielles et Applications: Articles dédiés à J.L. Lions, Gauthier-Villars-Elsevier, Paris, pp. 429–452 (1998)

    Google Scholar 

  51. Descombes, S., Thalhammer, M.: The Lie-Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime. IMA J. Num. Anal., 33 (2), 722–745 (2013)

    Article  MATH  Google Scholar 

  52. Desjardin, B., Esteban. M.: On weak solution for fluid-rigid structure interaction: compressible and incompressible models. Archives Rat. Mech. Anal., 146, 59–71 (1999)

    Google Scholar 

  53. Didas, S., Weickert, J., Burgeth, B.: Properties of higher order nonlinear diffusion filtering. Journal of Mathematical Imaging and Vision, 35, 208–226 (2009)

    Article  MATH  Google Scholar 

  54. Douglas, J.: Alternating direction methods in three space variables. Numer. Math., 4, 41–63 (1962)

    Article  MATH  Google Scholar 

  55. Douglas, J.: Alternating direction methods for parabolic systems in m-space variables. J. ACM, 9, 42–65 (1962)

    Article  Google Scholar 

  56. Douglas, J., Kim, S.: Improved accuracy for locally one-dimensional methods for parabolic equations. Math. Models Meth. Appl. Sciences, 11 (9), 1563–1579 (2001)

    Article  MATH  Google Scholar 

  57. Douglas, J., Rachford, H.H.: On the solution of the heat conduction problem in 2 and 3 space variables. Trans. Amer. Math. Soc., 82, 421–439 (1956)

    Article  MATH  Google Scholar 

  58. Duan, Y., Huang, W.: A fixed-point augmented Lagrangian method for total variation minimization problems. Journal of Visual Communication and Image Representation, 24, 1168–1181 (2013)

    Article  Google Scholar 

  59. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  60. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Progam., 55, 293–318 (1992)

    Article  MATH  Google Scholar 

  61. Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. CAM report, 9(31), Department of Mathematics, UCLA, Los Angeles, CA (2009)

    Google Scholar 

  62. Fortin, M., Glowinski, R.: Lagrangiens Augmentés: Application à la Résolution Numérique des Problèmes aux Limites. Dunod, Paris (1982)

    Google Scholar 

  63. Fortin, M., Glowinski, R.: Augmented Lagrangians: Application to the Numerical Solution of Boundary Value Problems. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  64. Gabay, D.: Application de la méthode des multiplicateurs aux inéquations variationnelles. In: Fortin, M., Glowinski, R. (eds.) Lagrangiens Augmentés: Application à la Résolution Numérique des Problèmes aux Limites, pp. 279–307. Dunod, Paris (1982)

    Google Scholar 

  65. Gabay, D.: Application of the methods of multipliers to variational inequalities In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangians: Application to the Numerical Solution of Boundary Value Problems, pp. 299–331. North-Holland, Amsterdam (1983)

    Google Scholar 

  66. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York, NY (1984, 2nd printing: 2008)

    Google Scholar 

  67. Glowinski, R.: Viscous flow simulation by finite element methods and related numerical techniques. In: Murman, E.M., Abarbanel, S.S. (eds.) Progress and Supercomputing in Computational Fluid Dynamics, pp. 173–210. Birkhäuser, Boston, MA (1985)

    Chapter  Google Scholar 

  68. Glowinski, R.: Splitting methods for the numerical solution of the incompressible Navier-Stokes equations. In: Balakrishnan, A.V., Dorodnitsyn, A.A., Lions, J.L. (eds.) Vistas in Applied Mathematics, pp. 57–95. Optimization Software, New York, NY (1986)

    Google Scholar 

  69. Glowinski, R.: Finite element methods for the numerical simulation of incompressible viscous flow. Application to the control of the Navier-Stokes equations. In: Anderson, C.R., Greengard, C. (eds.) Vortex Dynamics and Vortex Methods, pp. 219–301. American Mathematical Society, Providence, RI (1991)

    Google Scholar 

  70. Glowinski, R.: Finite element methods for incompressible viscous flow In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. IX, pp. 3–1176. North-Holland, Amsterdam (2003)

    Google Scholar 

  71. Glowinski, R.: On alternating direction methods of multipliers: A historical perspective. In: Fitzgibbon, W., Kuznetsov, Y.A., Neittaanmäki, P., Pironneau, O. (eds.) Modeling, Simulation and Optimization for Science and Technology, Vol. 34, pp. 59–82. Springer, Dordrecht (2014)

    Google Scholar 

  72. Glowinski, R.: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems. SIAM, Philadelphia, PA (2015)

    Book  MATH  Google Scholar 

  73. Glowinski, R., Dean, E.J., Guidoboni, G., Juarez, H.L., Pan, T.-W.: Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge-Ampère equation. Japan J. Ind. Appl. Math., 25, 1–63 (2008)

    Article  MATH  Google Scholar 

  74. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia, PA (1989)

    Book  MATH  Google Scholar 

  75. Glowinski, R., Leung, Y., Qian, J.: Operator-splitting based fast sweeping methods for isotropic wave propagation in a moving fluid. SIAM J. Scient. Comp., 38 (2), A1195–A1223 (2016)

    Article  MATH  Google Scholar 

  76. Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981).

    MATH  Google Scholar 

  77. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non-linéaires. C. R. Acad. Sci. Paris, 278A, 1649–1652 (1974)

    MATH  Google Scholar 

  78. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non-linéaires. ESAIM: Math. Model. Num. Anal., 9 (R2), 41–76 (1975)

    MATH  Google Scholar 

  79. Glowinski, R., Pan, T.-W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous fluid flow past moving rigid bodies: application to particulate flow. J. Comp. Phys., 169, 363–426 (2001)

    Article  MATH  Google Scholar 

  80. Glowinski, R., Quaini, A.: On an inequality of C. Sundberg: A computational investigation via nonlinear programming. Journal of Optimization Theory and Applications, 158 (3), 739–772 (2013)

    MATH  Google Scholar 

  81. Glowinski, R., Shiau, L., Sheppard, M.: Numerical methods for a class of nonlinear integro-differential equations. Calcolo, 50, 17–33 (2013)

    Article  MATH  Google Scholar 

  82. Glowinski, R., Sorensen, D.C.: Computing the eigenvalues of the Laplace-Beltrami operator on the surface of a torus: A numerical approach. In: Glowinski, R., Neittaanmäki, P. (eds.) Partial Differential Equations: Modeling and Numerical Solution, pp. 225–232. Springer, Dordrecht (2008)

    Chapter  Google Scholar 

  83. Glowinski, R., Wachs, A.: On the numerical simulation of visco-plastic fluid flow. In: Ciarlet, P.G., Glowinski, R., Xu, J. (eds.) Handbook of Numerical Analysis, Vol. XVI, pp. 483–717. North-Holland, Amsterdam (2011)

    Google Scholar 

  84. Godlewsky, E.: Méthodes à Pas Multiples et de Directions Alternées pour la Discrétisation d’Equations d’Evolution. Doctoral Dissertation, Department of Mathematics, University P. & M. Curie, Paris, France (1980)

    Google Scholar 

  85. Goldman, D., Kaper, T.J.: N th-order operator-splitting schemes and non-reversible systems. SIAM J. Num. Anal., 33 (1), 349–367 (1996)

    Article  MATH  Google Scholar 

  86. Goldstein, T., Osher, S.: The split-Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2, 323–343 (2009)

    Article  MATH  Google Scholar 

  87. Grandmont, C., Maday, Y.: Existence for an unsteady fluid-structure interaction problem. Math. Model. Num. Anal., 34, 609–636 (2000)

    Article  MATH  Google Scholar 

  88. Greer, J.B., Bertozzi, A.L.: Traveling wave solutions of fourth order PDEs for image processing. SIAM Journal on Mathematical Analysis, 36, 38–68 (2004)

    Article  MATH  Google Scholar 

  89. Guidotti, P., Longo, K.: Two enhanced fourth order diffusion models for image denoising. Journal of Mathematical Imaging and Vision, 40, 188–198 (2011)

    Article  MATH  Google Scholar 

  90. Guermond, J.L.: Some implementations of projection methods for Navier-Stokes equations. RAIRO-Model. Math. Anal. Num., 30 (5), 637–667 (1996)

    MATH  Google Scholar 

  91. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comp. Meth. Appl. Mech. Eng., 195 (44), 6011–6045 (2006)

    Article  MATH  Google Scholar 

  92. Guermond, J.L., Quartapelle, L.: Calculation of incompressible viscous flows by an unconditionally stable projection FEM. J. Comp. Phys., 132 (1),12–33(1997)

    Google Scholar 

  93. Guermond, J.L., Quartapelle, L.: On the approximation of the unsteady Navier-Stokes equations by finite element projection methods. Numer. Math., 80 (2), 207–238 (1998)

    Article  MATH  Google Scholar 

  94. Guermond, J.L., Shen, J.: A new class of truly consistent splitting schemes for incompressible flows. J. Comp. Phys., 192 (1), 262–276 (2003)

    Article  MATH  Google Scholar 

  95. He, B., Yuan, X.: On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal., 50, 700–709 (2012)

    Article  MATH  Google Scholar 

  96. Hesse, R, Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM Journal on Optimization, 23 (4), 2397–2419 (2013)

    Article  MATH  Google Scholar 

  97. Hou, S., T.-W. Pan, Glowinski, R.: Circular band formation for incompressible viscous fluid-rigid-particle mixtures in a rotating cylinder. Physical Review E, 89, 023013 (2014)

    Google Scholar 

  98. Hu, H.H., Patankar, N.A., Zhu, M.Y.: Direct numerical simulation of fluid-solid systems using arbitrary Lagrangian-Eulerian techniques. J. Comp. Phys., 169, 427–462 (2001)

    Article  MATH  Google Scholar 

  99. Hu, L., Chen, D., Wei, G.W.: High-order fractional partial differential equation transform for molecular surface construction. Molecular Based Mathematical Biology, 1, 1–25 (2013)

    Article  MATH  Google Scholar 

  100. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems. SIAM, Philadelphia, PA (2008)

    Book  MATH  Google Scholar 

  101. Jidesh, P., George, S.: Fourth–order variational model with local–constraints for denoising images with textures. International Journal of Computational Vision and Robotics, 2, 330–340 (2011)

    Article  Google Scholar 

  102. Jin, S., Markowich, P.A., Zheng, C.: Numerical simulation of a generalized Zakharov system. J. Comp. Phys., 201, 376–395 (2004)

    Article  MATH  Google Scholar 

  103. Johnson, A.A., Tezduyar, T.E.: 3-D simulations of fluid-particle interactions with the number of particles reaching 100. Comp. Meth. Appl. Mech. Engrg., 145, 301–321 (1997)

    Article  MATH  Google Scholar 

  104. Kao, C.Y., Osher, S.J., Qian, J.: Lax-Friedrichs sweeping schemes for static Hamilton-Jacobi equations. J. Comput. Phys., 196, 367–391 (2004)

    Article  MATH  Google Scholar 

  105. Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier-Stokes equations. J. Comp. Phys., 97 (2), 414–443 (1991)

    Article  MATH  Google Scholar 

  106. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision, 1, 321–331 (1988)

    Article  MATH  Google Scholar 

  107. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. Journal of Computational Physics, 59 (2), 308–323 (1985)

    Article  MATH  Google Scholar 

  108. Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. International Journal of Computer Vision, 39, 111–129 (2000)

    Article  MATH  Google Scholar 

  109. Lanza, A., Morigi, S., Sgallari, F.: Convex image denoising via non-convex regularization. In: Aujol, J.F., Nikolova, M., Papadakis, N. (eds.) Scale Space and Variational Methods in Computer Vision, pp. 666–677, Proceedings, LNCS 9087, Springer International Publishing (2015).

    Google Scholar 

  110. Layton, W.J., Maubach, J.M., Rabier, P.J.: Parallel algorithms for maximal monotone operators of local type. Numer. Math., 71, 29–58 (1995)

    Article  MATH  Google Scholar 

  111. Le, H., Moin, P.: An improvement of fractional step methods for the incompressible Navier-Stokes equations. Journal of Computational Physics, 92 (2), 369–379 (1991)

    Article  MATH  Google Scholar 

  112. Lee, M.J., Do Oh, B., Kim, Y.B.: Canonical fractional-step methods and consistent boundary conditions for the incompressible Navier-Stokes equations. J. Comp. Phys., 168 (1), 73–100 (2001)

    Article  MATH  Google Scholar 

  113. Lehoucq, R.B., Sorensen, D. C., Yang, C.: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA (1998)

    Book  MATH  Google Scholar 

  114. Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imaging Sci., 4, 1049–1096 (2011)

    Article  MATH  Google Scholar 

  115. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Foundations of Computational Mathematics, 9 (4), 485–513 (2009)

    Article  MATH  Google Scholar 

  116. Li, C.H., Glowinski, R.: Modeling and numerical simulation of low-Mach number compressible flows. Int. J. Numer. Meth. Fluids, 23 (2), 77–103 (1996)

    Article  MATH  Google Scholar 

  117. Lie, J., Lysaker, M., Tai, X.-C.: A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Transactions on Image Processing, 15, 1171–1181 (2006)

    Article  MATH  Google Scholar 

  118. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Num. Anal., 16, 964–979 (1979)

    Article  MATH  Google Scholar 

  119. Lu, T., Neittaanmäki, P., Tai, X.-C.: A parallel splitting up method for partial differential equations and its application to Navier-Stokes equations. RAIRO Math. Model. and Numer. Anal., 26, 673–708 (1992)

    MATH  Google Scholar 

  120. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. Image Processing, IEEE Transactions on, 12, 1579–1590 (2003)

    Article  MATH  Google Scholar 

  121. Marchuk, G.I.: Splitting and alternating direction methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. I, pp. 197–462. North-Holland, Amsterdam (1990)

    Google Scholar 

  122. Marion, M., Temam, R.: Navier-Stokes equations: Theory and approximation. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. VI, pp. 503–689. North-Holland, Amsterdam (1998)

    Google Scholar 

  123. Marsden, J.: A formula for the solution of the Navier-Stokes equation based on a method of Chorin. Bulletin of the American Mathematical Society, 80 (1),154–158 (1974)

    Article  MATH  Google Scholar 

  124. Masnou, S., Morel, J.M.: Level lines based disocclusions. In: Proceedings IEEE International Conferenceon Image Processing, Chicago, IL, pp. 259–263 (1998).

    Google Scholar 

  125. Mason, P., Aftalion, A.: Classification of the ground states and topological defects in a rotating two-component Bose-Einstein condensate. Physical Review A, 84, 033611 (2011)

    Article  Google Scholar 

  126. Mason, P., Aftalion, A.: Vortex-peak interaction and lattice shape in rotating two-component Bose-Einstein condensates. Physical Review A, 85, 033614 (2012)

    Article  Google Scholar 

  127. Maury, B.: Direct simulation of 2-D fluid-particle flows in bi-periodic domains. J. Comp. Phys., 156, 325–351 (1999)

    Article  MATH  Google Scholar 

  128. Maury, B.: A time-stepping scheme for inelastic collisions. Numer. Math., 102, 649–679 (2006)

    Article  MATH  Google Scholar 

  129. Maury, B., Venel, J.: Handling of contacts in crowd motion simulations. In: Appert-Rolland, C., Chevoir, F., Gondret, P., Lassarre, S., Lebacque, J.P., Schreckenberg, M. (eds.) Traffic and Granular Flow’07, pp. 171–180. Springer, Berlin Heidelberg (2009)

    Google Scholar 

  130. Min, L., Yang, X., Gui, C.: Entropy estimates and large-time behavior of solutions to a fourth-order nonlinear degenerate equation. Communications in Contemporary Mathematics, 15, (2013)

    Google Scholar 

  131. Mouhot, C., Villani, C.: On Landau damping, Acta Mathematica, 207, 29–201 (2011)

    Article  MATH  Google Scholar 

  132. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math., 42, 577–685 (1989)

    Article  MATH  Google Scholar 

  133. Myllykoski, M., Glowinski, R., Kärkkäinen, T., Rossi, T.: A new augmented Lagrangian approach for L 1-mean curvature image denoising. SIAM Journal on Imaging Sciences, 8, 95–125 (2015)

    Article  MATH  Google Scholar 

  134. Nadernejad, E., Forchhammer, S.: Wavelet-based image enhancement using fourth order PDE. In Intelligent Signal Processing (WISP), 2011 IEEE 7th International Symposium on, pp. 1–6. IEEE (2011)

    Google Scholar 

  135. Nitzberg, M., Mumford, D., Shiota, T.: Filtering, segmentation and depth. Lecture Notes in Computer Science, 662 (1993)

    Google Scholar 

  136. Pan, T.-W., Glowinski, R.: Direct numerical simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow. J. Comp. Phys., 181, 260–279 (2002)

    Article  MATH  Google Scholar 

  137. Pan, T.-W., Glowinski, R., Hou, S.: Direct numerical simulation of pattern formation in a rotating suspension of non-Brownian settling particles in a fully filled cylinder. Computers & Structures, 85, 955–969 (2007)

    Article  Google Scholar 

  138. Papafitsoros, K., Schönlieb, C.B.: A combined first and second order variational approach for image reconstruction. Journal of Mathematical Imaging and Vision, 48, 308–338 (2014)

    Article  MATH  Google Scholar 

  139. Peaceman, D.H., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math., 3, 28–41 (1955)

    Article  MATH  Google Scholar 

  140. Prignitz, R., Bänsch, E.: Numerical simulation of suspension induced rheology. Kybernetika, 46, 281–293 (2010)

    MATH  Google Scholar 

  141. Prignitz, R., Bänsch, E.: Particulate flows with the subspace projection method. J. Comp. Phys., 260, 249–272 (2014)

    Article  MATH  Google Scholar 

  142. Rosman, G., Bronstein, A.M., Bronstein, M.M., Tai, X.C., Kimmel, R.: Group-valued regularization for analysis of articulated motion. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) Computer Vision–ECCV 2012. Workshops and Demonstrations, pp. 52–62. Springer, Berlin (2012)

    Chapter  Google Scholar 

  143. Rosman, G., Wang, Y., Tai, X.C., Kimmel, R., Bruckstein, A.M.: Fast regularization of matrix-valued images. In: Bruhn, A., Pock, T., Tai, X.C. (eds.) Efficient Algorithms for Global Optimization Methods in Computer Vision, pp. 19–43. Springer, Berlin (2014)

    Chapter  Google Scholar 

  144. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  145. San Martin, J.A., Starovoitov, V., Tucksnak, M.: Global weak convergence for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Archives Rat. Mech. Anal., 161, 113–147 (2002)

    Article  MATH  Google Scholar 

  146. Schoenemann, T., Kahl, F., Cremers, D.: Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation. In Computer Vision, 2009 IEEE 12th International Conference on, pp. 17–23. IEEE (2009)

    Google Scholar 

  147. Schönlieb, C.B., Bertozzi, A.: Unconditionally stable schemes for higher order inpainting. Communications in Mathematical Sciences, 9, 413–457 (2011)

    Article  MATH  Google Scholar 

  148. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966)

    MATH  Google Scholar 

  149. Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. Approximation, 12, 360–386 (2008).

    MATH  Google Scholar 

  150. Sheng, Q.: Solving linear partial differential equations by exponential splitting. IMA J. Num. Anal., 9 (2), 199–212 (1989)

    Article  MATH  Google Scholar 

  151. Sheng, Q.: Global error estimates for exponential splitting. IMA J. Num. Anal., 14 (1), 27–56 (1994)

    Article  MATH  Google Scholar 

  152. Sigurgeirson, H., Stuart, A.M., Wan, J.: Collision detection for particles in flow. J. Comp. Phys., 172, 766–807 (2001)

    Article  Google Scholar 

  153. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Num. Anal., 5, 506–517 (1968)

    Article  MATH  Google Scholar 

  154. Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM Journal on Imaging Sciences, 4, 313 (2011)

    Article  MATH  Google Scholar 

  155. Tai, X.C., Neittaanmäki, P.: Parallel finite element splitting–up method for parabolic problems. Numerical Methods for Partial Differential Equations, 7, 209–225 (1991)

    Article  MATH  Google Scholar 

  156. Tai, X.C., Wu, C.: Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. In: Tai, X.C., Morken, K., Lysaker, M., Lie, K.-A. (eds.) Scale Space and Variational Methods in Computer Vision, pp. 502–513. Springer, Berlin (2009)

    Chapter  Google Scholar 

  157. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)

    MATH  Google Scholar 

  158. Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I). Archive for Rational Mechanics and Analysis, 32 (2), 135–153 (1969)

    Article  MATH  Google Scholar 

  159. Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II). Archive for Rational Mechanics and Analysis, 33 (5), 377–385 (1969)

    Article  MATH  Google Scholar 

  160. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. American Mathematical Society, Providence, RI (2001)

    Book  MATH  Google Scholar 

  161. Thalhammer, M.: High-order exponential operator-splitting methods for time-dependent Schrödinger equations. SIAM J. Num. Anal., 46 (4), 2022–2038 (2008)

    Article  MATH  Google Scholar 

  162. Turek, S., Rivkind, L., Hron, J., Glowinski, R.: Numerical study of a modified time-stepping θ-scheme for incompressible flow simulations. J. Scient. Comp., 28, 533–547 (2006)

    Article  MATH  Google Scholar 

  163. Villani, C.: Birth of a Theorem: A Mathematical Adventure. Ferrar, Strauss & Giroux, New York, NY. (2015)

    MATH  Google Scholar 

  164. Wachpress, E.L.: The ADI model problem. Springer, New York, NY (2013)

    Book  Google Scholar 

  165. Wan, D., Turek, S.: Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows. J. Comp. Phys., 222, 28–56 (2007)

    Article  MATH  Google Scholar 

  166. Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. arXiv preprint arXiv:1511.06324 (2015)

    Google Scholar 

  167. Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. Image Processing, IEEE Transactions on, 7, 398–410 (1998)

    Article  Google Scholar 

  168. Wekipedia. Co-area formula (http://en.wikipedia.org/wiki/coarea_formula) (2013)

  169. Wikipedia. Total variation (http://en.wikipedia.org/wiki/total_variation) (2014)

  170. Wu, C., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM Journal on Imaging Sciences, 3, 300–339 (2010)

    Article  MATH  Google Scholar 

  171. Yang, F., Chen, K., Yu, B.: Efficient homotopy solution and a convex combination of ROF and LLT models for image restoration. International Journal of Numerical Analysis & Modeling, 9, 907–927 (2012)

    MATH  Google Scholar 

  172. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l 1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences, 1, 143–168 (2008)

    Article  MATH  Google Scholar 

  173. Yuan, J., Bae, E., Tai, X.C.: A study on continuous max-flow and min-cut approaches. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 2217–2224. IEEE (2010)

    Google Scholar 

  174. Yuan, J., Bae, E., Tai, X.C., Boykov, Y.: A continuous max-flow approach to Potts model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision–ECCV 2010, pp. 379–392. Springer, Berlin (2010)

    Chapter  Google Scholar 

  175. Yuan, J., Bae, E., Tai, X.C., Boykov, Y.: A spatially continuous max-flow and min-cut framework for binary labeling problems. Numerische Mathematik, 126, 559–587 (2014)

    Article  MATH  Google Scholar 

  176. Yuan, J., Schnorr, C., Steidl, G.: Simultaneous higher-order optical flow estimation and decomposition. SIAM Journal on Scientific Computing, 29, 2283–2304 (2007)

    Article  MATH  Google Scholar 

  177. Yuan, J., Shi, J., Tai, X.C.: A convex and exact approach to discrete constrained TV − L 1 image approximation. East Asian Journal on Applied Mathematics, 1, 172–186 (2011)

    Article  MATH  Google Scholar 

  178. Zach, C., Gallup, D., Frahm, J.-M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In Vision, Modeling and Visualization Workshop (VMV) pp. 243–252 (2008)

    Google Scholar 

  179. Zakharov, V.E.: Collapse of Langmuir waves. Soviet Journal of Experimental and Theoretical Physics, 35, 908–914 (1972)

    Google Scholar 

  180. Zeng, W., Lu, X., Tan, X.: Nonlinear fourth-order telegraph-diffusion equation for noise removal. IET Image Processing, 7, 335–342 (2013)

    Article  Google Scholar 

  181. Zhao, H. K.: Fast sweeping method for Eikonal equations. Math. Comp., 74, 603–627 (2005)

    Article  MATH  Google Scholar 

  182. Zhu, W., Chan, T.: Image denoising using mean curvature of image surface. SIAM Journal on Imaging Sciences, 5, 1–32 (2012)

    Article  MATH  Google Scholar 

  183. Zhu, W., Chan, T.: A variational model for capturing illusory contours using curvature. Journal of Mathematical Imaging and Vision, 27, 29–40 (2007)

    Article  Google Scholar 

  184. Zhu, W., Chan, T., Esedoglu, S.: Segmentation with depth: A level set approach. SIAM Journal on Scientific Computing, 28, 1957–1973 (2006)

    Article  MATH  Google Scholar 

  185. Zhu, W., Tai, X.-C., Chan, T.: Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems and Imaging, 7, 1409–1432 (2013)

    Article  MATH  Google Scholar 

  186. Zhu, W., Tai, X.C., Chan, T.F.: Image segmentation using Euler’s elastica as the regularization. Journal of Scientific Computing, 57 (2), 414–438 (2013).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Glowinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glowinski, R., Pan, TW., Tai, XC. (2016). Some Facts About Operator-Splitting and Alternating Direction Methods. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_2

Download citation

Publish with us

Policies and ethics