Skip to main content

Bio-based Composites as Thermorheologically Complex Materials

  • Conference paper
  • First Online:
Challenges in Mechanics of Time Dependent Materials, Volume 2

Abstract

Because of their structure, natural fibers exhibit nonlinear viscoelastic behavior. Thermoset resins also behave in a similar way. With the increase in structural applications of bio-based composites, the long-term creep behavior of these materials becomes a significant issue. Time-Temperature superposition (TTS) provides a useful tool to overcome the challenge of needing a long time to perform creep tests. TTS principle assumes that the effect of temperature and time are equivalent when considering the creep behavior. In this study, frequency scans of flax/VE composites were obtained at different temperatures and storage modulus, loss modulus and tan δ were recorded. Application of horizontal and vertical shift factors to all three viscoelastic functions were studied. In addition, short-term strain creeps at different temperatures were measured and curves were shifted both with only horizontal, and with both horizontal and vertical shift factors. Resulting master curves were compared with a 24-h creep test and two creep models. Findings revealed that use of both horizontal and vertical shift factors will result in a smoother master curve for viscoelastic functions, while use of only horizontal shift factors for creep data provides an acceptable creep strain master curve. Consequently flax/VE composites can be considered as thermorheologically complex materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, S.A., Srubar, W.V., Billington, S.L., Lepech, M.D.: Integrating durability-based service-life predictions with environmental impact assessments of natural fiber–reinforced composite materials. Resour. Conserv. Recycl. 99, 72–83 (2015)

    Article  Google Scholar 

  2. Amiri, A., Ulven, C.: Surface treatment of flax fiber. In: 65th Flax Institute of the United States, Fargo (2014), pp. 117–125. doi:10.13140/RG.2.1.4752.4005

  3. Fuqua, M.A., Huo, S., Ulven, C.A.: Natural fiber reinforced composites. Polym. Rev. 52, 259–320 (2012)

    Article  Google Scholar 

  4. Amiri, A., Hosseini, N., Ulven, C., Webster, D.: Advanced bio-composites made from methacrylated epoxidized sucrose soyate resin reinforced with flax fibers. In: 20th International Conference on Composite Materials, Copenhagen, Denmark (2015), p. 3503. doi:10.13140/RG.2.1.1062.8965

  5. Zhu, J., Abhyankar, H., Nassiopoulos, E., Njuguna, J.: Tannin-based flax fibre reinforced composites for structural applications in vehicles. In: IOP Conference Series: Materials Science and Engineering (2012), p. 012030

    Google Scholar 

  6. Avril, C., Bailly, P., Njuguna, J., Nassiopoulos, E., De Larminat, A.: Development of flax-reinforced bio-composites for high-load bearing automotive parts. In: Proceeding of European Conference on Composite Materials (ECCM), Venice, Italy (2012), pp. 24–28

    Google Scholar 

  7. Lincoln, J.D., Shapiro, A., Earthman, J.C., Saphores, J.-D.M., Ogunseitan, O.: Design and evaluation of bioepoxy-flax composites for printed circuit boards. IEEE Trans. Electron. Packag. Manuf. 31, 211–220 (2008)

    Article  Google Scholar 

  8. Le Duigou, A., Davies, P., Baley, C.: Interfacial bonding of Flax fibre/Poly(l-lactide) bio-composites. Compos. Sci. Technol. 70, 231–239 (2010)

    Article  Google Scholar 

  9. Newman, R.H.: Auto-accelerative water damage in an epoxy composite reinforced with plain-weave flax fabric. Compos. A: Appl. Sci. Manuf. 40, 1615–1620 (2009)

    Article  Google Scholar 

  10. Newman, R.H., Battley, M.A., Carpenter, J.E., Le Guen, M.J.: Energy loss in a unidirectional flax-polyester composite subjected to multiple tensile load–unload cycles. J. Mater. Sci. 47, 1164–1170 (2012)

    Article  Google Scholar 

  11. Michel, A., Billington, S.: Nonlinear constitutive model for anisotropic biobased composite materials. J. Eng. Mech. 140, 04014083 (2014)

    Article  Google Scholar 

  12. Amiri, A., Ulven, C.A., Huo, S.: Effect of chemical treatment of flax fiber and resin manipulation on service life of their composites using time-temperature superposition. Polymers 7, 1965–1978 (2015). doi:10.3390/polym7101493

    Article  Google Scholar 

  13. Amiri, A., Hosseini, N., Ulven, C.A.: Long-term creep behavior of flax/vinyl ester composites using time-temperature superposition principle. J. Renewable Mater. 3, 224–233 (2015). doi:10.7569/JRM.2015.634111

    Article  Google Scholar 

  14. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  15. Guedes, R.M.: Creep and fatigue in polymer matrix composites. Elsevier, New York (2010)

    Google Scholar 

  16. Tajvidi, M., Falk, R.H., Hermanson, J.C.: Time–temperature superposition principle applied to a kenaf‐fiber/high‐density polyethylene composite. J. Appl. Polym. Sci. 97, 1995–2004 (2005)

    Article  Google Scholar 

  17. Ward, I.M., Sweeney, J.: Mechanical properties of solid polymers. Wiley, New York (2012)

    Book  Google Scholar 

  18. Van Gurp, M., Palmen, J.: Time-temperature superposition for polymeric blends. Rheol. Bull. 67, 5–8 (1998)

    Google Scholar 

  19. Landel, R.F., Nielsen, L.E.: Mechanical properties of polymers and composites. CRC Press, Boca Raton (1993)

    Google Scholar 

  20. Djoković, V., Kostoski, D., Dramićanin, M.: Viscoelastic behavior of semicrystalline polymers at elevated temperatures on the basis of a two‐process model for stress relaxation. J. Polym. Sci. B Polym. Phys. 38, 3239–3246 (2000)

    Article  Google Scholar 

  21. Whitacre, R., Amiri, A., Ulven, C.: The effects of corn zein protein coupling agent on mechanical properties of flax fiber reinforced composites. Ind. Crop. Prod. 77, 232–238 (2015). doi:10.1016/j.indcrop.2015.08.056

    Article  Google Scholar 

  22. Hughes, M., Carpenter, J., Hill, C.: Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites. J. Mater. Sci. 42, 2499–2511 (2007)

    Article  Google Scholar 

  23. Nutting, P.: A study of elastic viscous deformation. In: Proceedings of ASTM (1921), pp. 1162–1171.

    Google Scholar 

  24. Blair, G.S., Caffyn, J.: An application of the theory of quasi-properties to the treatment of anomalous strain-stress relations. Philos. Mag. 40, 80–94 (1949)

    Article  MATH  Google Scholar 

  25. Blair, G.S., Veinoglou, B.: A study of the firmness of soft materials based on Nutting’s equation. J. Sci. Instrum. 21, 149 (1944)

    Article  Google Scholar 

  26. Betten, J.: Creep mechanics. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  27. Findley, W.N., Lai, J.S., Onaran, K.: Creep and relaxation of nonlinear viscoelastic materials. North-Holland Pub. Co, Amsterdam (1976)

    Google Scholar 

  28. International, A.: ASTM D2990-09 standard test methods for tensile, compressive, and flexural creep and creep-rupture of plastics. ASTM International, Philadelphia (2009)

    Google Scholar 

  29. Shaw, M.T., MacKnight, W.J.: Introduction to polymer viscoelasticity. Wiley, New York (2005)

    Book  Google Scholar 

  30. Harper, B., Weitsman, Y.: Characterization method for a class of thermorheologically complex materials. J. Rheol. 29, 49–66 (1985)

    Article  Google Scholar 

  31. Feng, D., Caulfield, D., Sanadi, A.: Effect of compatibilizer on the structure-property relationships of kenaf-fiber/polypropylene composites. Polym. Compos. 22, 506–517 (2001)

    Article  Google Scholar 

  32. Marais, C., Villoutreix, G.: Analysis and modeling of the creep behavior of the thermostable PMR‐15 polyimide. J. Appl. Polym. Sci. 69, 1983–1991 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad Ulven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Amiri, A., Ulven, C. (2017). Bio-based Composites as Thermorheologically Complex Materials. In: Antoun, B., et al. Challenges in Mechanics of Time Dependent Materials, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41543-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41543-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41542-0

  • Online ISBN: 978-3-319-41543-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics