Skip to main content

Distribution of Caesium in Soil and its Uptake by Plants

  • Chapter
  • First Online:
Impact of Cesium on Plants and the Environment

Abstract

The speciation of radiocaesium forms in the soil horizons that determine its further behaviour in the environment was considered. The present-day equilibrium in radiocaesium migration processes demonstrates that 70–90 % of the radionuclide was retained in the fixed form in upper 5–20 cm soil layer regardless of the type of soil and nature of contamination. In the forest ecosystems the litter layer continues to be a major accumulator of radiocaesium and contains 40–80 % of 137Cs being the main biochemical barrier to its vertical and horizontal migration. It was shown that radiocaesium can be easily absorbed by plant roots from soil solution and translocated to the above-ground plant biomass. The main environmental factors responsible for the variability in radiocaesium uptake by higher plants from soil are described. The uptake of radiocaesuim by plant species of herbal-shrubby storey in forest ecosystems was considered. It was shown that various plant species reveal the differences in 137Cs uptake via significantly different rates of the radionuclide accumulation during their vegetation period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Absalom JP, Young SD, Crout NMJ (1995) Radiocaesium fixation dynamics: Measurement in six Cumbrian soils. Eur J Soil Sci 46:461–469

    Article  CAS  Google Scholar 

  • Anenkov BN (1991) Basics of agricultural radiology. Nauka, Moscow, p 287. ISBN 5-10-001803-8

    Google Scholar 

  • Anenkov BN, Yegorov AV, Ilyazov RG (2004) Radiation accidents and liquidation of their consequences in agriculture. Nauka, Kazan, p 407. ISBN 5-7544-0255-4

    Google Scholar 

  • Audi G, Wapstra AH, Thibault C, Blachot J, Bersillon O (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys 729:3–128

    Article  Google Scholar 

  • Avery S (1996) Fate of caesium in the environment: Distribution between the abiotic and biotic components of aquatic and terrestrial ecosystems. J Environ Radioact 30:139–171

    Article  CAS  Google Scholar 

  • Avery S, Godd GA, Gadd GM (1992) Interactions of cyanobacteria and microalgae with caesium. In: Vernet JP (ed) Impact of heavy metals on the environment. Elsevier, Amsterdam, p 133–182. ISBN 0-444-89522-1

    Google Scholar 

  • Bakken LR, Olsen RA (1990) Accumulation of radiocaesium in fungi. Can J Microbiol 36:704–710

    Article  CAS  Google Scholar 

  • Baryakhtar V (1996) The Chornobyl catastrophe. Kyiv, Naukova dummka, p 575. ISBN 5-12-004061-6

    Google Scholar 

  • Bell JN, Minski MJ, Grogan HA (1988) Plant uptake of radionuclides. Soil Use Manage 4:76–84

    Article  CAS  Google Scholar 

  • Bergeijk KE, Noordijck H, Lembrechts J, Frissel MJ (1992) Influence of pH, soil type and soil organic matter content on soil-to-plant transfer of radiocaesium and strontium as analyzed by a nonparametric method. J Environ Radioact 15:265–276

    Article  Google Scholar 

  • Bruckmann A, Wolters V (1994) Microbial immobilization and recycling of 137Cs in the organic layers of forest ecosystems: Relationship to environmental conditions, humification and invertebrate activity. Sci Tot Environ 157:249–256

    Article  Google Scholar 

  • Carter MW (1988) Radionuclides in the food chain. Springer, New York, p 518. ISBN 387-19511-4

    Google Scholar 

  • Conkic L, Ivo M (1990) The impact of the Chornobyl accident on the radioactivity of the river Danube. Water Sci Technol 22:195–202

    CAS  Google Scholar 

  • Coughtrey PJ, Thorne MC (1983) Radionuclide distribution and transport in terrestrial and aquatic ecosystems: A critical review of data. Vol. 2. Balkema, Rotterdam, p 493. ISBN 90-6191-279-2

    Google Scholar 

  • Daroczy S, Bolyos A, Deszo A, Pazsit A, Nagy J, Tamasi T, Bemke E (1994) Subsequent mapping of 137Cs fallout from Chernobyl in Hungary using the radioactivity found in mosses. Naturwissenschaften 81:175–177

    CAS  Google Scholar 

  • Delvaux B, Kruyts N, Maes E, Smolders E (2001) Fate of radiocaesium in soil and rhizosphere. In: Gobran GR (ed) Trace elements in the rhizosphere. CRC Press, London, p 61–91

    Google Scholar 

  • Dupré de Boulois H, Joner EJ, Leyval C, Jakobsen I, Chen BD, Roos P, Thiry Y, Rufyikiri G, Delvaux B, Declerck S (2008) Role and influence of mycorrhizal fungi on radiocaesium accumulation by plants. J Environ Radioact 99:785–800

    Article  Google Scholar 

  • Furdychko OI (2012) Recommendations on forest management in conditions of radioactive contamination. Ministry of Agriculture of Ukraine, Kyiv, p 318

    Google Scholar 

  • Garger Y, Lev T, Patyka V (2002) Radioecological monitoring of agricultural production areas in Ukrainian Polissya. Agric Sci 9:62–66

    Google Scholar 

  • Ghosh A, Sharma A, Talukder G (1993) Effects of caesium on cellular systems. Biol Trace Elem Res 38:165–203

    Article  CAS  Google Scholar 

  • Grytsyuk N (2001) Dependence of 137Cs transfer factor in meadow grasses from landscape structure of the territory. Agric Sci 4:96–98

    Google Scholar 

  • Hampton R, Bowen H, Broadley M, Hammond J, Mead A, Payne K, Pritchard J, White P (2004) Cesium toxicity in Arabidopsis. Plant Physiol 136:3824–3837

    Article  CAS  Google Scholar 

  • Heinrich G (1992) Uptake and transfer factors of 137Cs by mushrooms. Radiat Environ Biophys 31:39–49

    Article  CAS  Google Scholar 

  • Hirose K (2012) Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results. J Environ Radioact 111:13–17

    Article  CAS  Google Scholar 

  • Horyna J, Randa Z (1988) Uptake of radiocesium and alkali metals by mushrooms. J Radioanal Nucl Chem 127:107–120

    Article  CAS  Google Scholar 

  • Huang Y, Kaneko N, Nakamori T (2016) Radiocaesium immobilization to leaf litter by fungi during first-year decomposition in a deciduous forest in Fukushima. J Environ Radioact 152:28–34

    Article  CAS  Google Scholar 

  • Isaksson M, Erlandsson B, Mattsson S (2001) A 10-year study of the 137Cs distribution in soil and a comparison of Cs soil inventory with precipitation-determined deposition. J Environ Radioact 55:47–59

    Article  CAS  Google Scholar 

  • Israel Y, Vakulovskij S (1990) Chornobyl: Radioactive contamination of the natural environment. Gidrometeoizdat, Leningrad, p 30. ISBN 5-89107-063-4

    Google Scholar 

  • Ivanov Y (2004) Radioecological research. Lviv University Edition Centre, Lviv. УДК 504.064.2:550.3(621.039.7) p 149.

    Google Scholar 

  • Ivanov YA, Levyekyj N, Levchuck SE, Prister BS, Firsakova SK, Arkhipov NP, Arkhipov AN, Kruglov SV, Alexakhin RM, Sandalls J, Askbrant S (1997) Migration of 137Cs and 90Sr from Chornobyl fallout in Ukrainian, Belorussian and Russian soils. J Environ Radioact 35:1–21

    Article  CAS  Google Scholar 

  • Kanter U, Hauser A, Michalke B, Draxl S, Schaffner A (2010) Caesium and strontium accumulation in shoots of Arabidopsis thaliana: Genetic and physiological aspects. J Exp Bot 61:3995–4009

    Article  CAS  Google Scholar 

  • Karachov I (2006) Problems of the forest food radioactive contamination and internal irradiation of the population. J Nutr 1:22–29

    Google Scholar 

  • Kashparov VM (2001) Formation and dynamics of radioactive contamination of the environment during the accident at Chornobyl NPP and post-accidental period. Chornobyl Exclusion zone, Collected Papers, p 11–46

    Google Scholar 

  • Kholosha V, Proskura M, Ivanov Y (1999) Radiation and ecological significance of natural and technogenic objects of exclusion zone. Bull Ecol State Excl Zone Zone Unconditional (Obligatory) Resettle 13:3–8

    Google Scholar 

  • Kirk GJD, Staunton S (1989) On predicting the fate of radioactive caesium in soil beneath grassland. J Soil Sci 40:71–84

    Article  CAS  Google Scholar 

  • Koarashi J, Atarashi-Andoh M, Matsunaga T, Sato T, Nagao S, Nagai H (2012) Factors affecting vertical distribution of Fukushima accident-derived radiocaesium in soil under different land-use conditions. Sci Total Environ 43:392–401

    Article  Google Scholar 

  • Komarov E, Bennett B (1983) Selected radionuclides. World Health Organization, Geneva, p 491. ISBN 92-4-154085-0

    Google Scholar 

  • Konopleva I, Klemt E, Konoplev A, Zibold G (2009) Migration and bioavailability of 137Cs in forest soil of southern Germany. J Environ Radioact 100:315–321

    Article  CAS  Google Scholar 

  • Kordan HA (1987) Reversal of caesium inhibition of growth by potassium in hypocotyls of tomato seedlings (Lycopersicon esculentum L.). New Phytol 107:395–401

    Article  CAS  Google Scholar 

  • Kotkova T (2004) Accumulation of 137Cs by plants in process of their development under conditions of Polissya. Dissertation, Zhytomyr University p 158.

    Google Scholar 

  • Lee MH, Lee CW (2000) Association of fallout-derived 137Cs, 90Sr and 239,240Pu with natural organic substances in soils. J Environ Radioact 47:253–362

    Article  CAS  Google Scholar 

  • Loshchilov N, Ivanov Y, Kashparov V, Bondar P (1990) Parameters of 90Sr and 137Cs migration in soils of Polissya region. All-Union Conference on Agricultural Radiology. Obninsk 4:2–14

    Google Scholar 

  • Mahara Y (1993) Storage and migration of fallout strontium-90 and caesium-137 for over 40 years in the surface soil of Nagasaki. J Environ Qual 22:722–730

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889. ISBN 978-0-12-473542-2

    Google Scholar 

  • Morrey M, Brown IM, Williams J, Crick M, Simmonds J, Hill MD (1988) A preliminary assessment of the radiological impact of the Chornobyl accident on the population of European Communities. EUR report 11523. EC Office of Official Publications, Luxembourg

    Google Scholar 

  • Nakanishi T, Matsunaga T, Koarashi J, Atarashi-Andoh M (2014) 137Cs vertical migration in a deciduous forest soil following the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 128:9–14

    Article  CAS  Google Scholar 

  • Nakao A, Ogasawara S, Sano O, Ito T, Yanai J (2014) Radiocaesium sorption in relation to clay mineralogy of paddy soils in Fukushima, Japan. Sci Total Environ 468:523–529

    Article  Google Scholar 

  • Nichols AL, Hunt E (1998) Nuclear data table. In: Longworth G (ed) The radiochemical manual. AEA Technology, Harwell

    Google Scholar 

  • Noordijck H, Bergeijk KE, Lembrechts J, Frissel MJ (1992) Impact of ageing and weather conditions on soil-to-plant transfer of radiocaesium and radiostrontium. J Environ Radioact 15:277–286

    Article  Google Scholar 

  • Orlov A, Krasnov V (1996) Intensity of Cs-137 accumulation by species of living ground cover of oak and pine-oak forests in fresh forests of Ukrainian Polissya: Classification, ordination, patterns. Ecolog Prob Forest Manage 4:25–30

    Google Scholar 

  • Perkins J, Gadd G (1993) Caesium toxicity, accumulation and intracellular localization in yeasts. Mycol Res 97:717–724

    Article  CAS  Google Scholar 

  • Pietrzak-Flis Z, Krajewski P, Krajewska G, Sunderland NR (1994) Transfer of radiocaesium from uncultivated soils to grass after the Chornobyl accident. Sci Tot Environ 141:147–153

    Article  CAS  Google Scholar 

  • Prister B (2007) Agricultural production in areas contaminated after Chernobyl accident in the remote period. Methodical recommendations. Atika, Kyiv, p 196

    Google Scholar 

  • Pronevych VA (2013) Dynamics of 137Cs in Polissya soils. Agroecol J 4:41–44

    Google Scholar 

  • Pronevych VA (2014) Migration of 137Cs in forest biocenosis of Polissya. Ecol Environ 24:145–150

    Google Scholar 

  • Rosen K, Oborn I, Lonsjo H (1999) Migration of radiocaesium in Swedish soil profiles after the Chornobyl accident, 1987–1995. J Environ Radioact 46:45–66

    Article  CAS  Google Scholar 

  • Rybalka VB, Rybalko SI, Zimin YuI, Petelin GI, Rybakova EA, Tepikin VE (2001) “Hot” particles of the Chornobyl exclusion zone in the research by electron microscopy. Atlas. ISBN:966-7654-41-9. Chornobyl Radioecological Center, Ukraine. http://cdn.intechopen.com/pdfs-wm/33373.pdf

  • Shainberg I, Kemper WD (1997) Ion exchange equilibria on montmorillonite. Soil Sci 103:4–9

    Article  Google Scholar 

  • Shcheglov A, Tsvetnova O, Klyashtorin A (2001) Biogeochemical migration of technogenic radionuclides in forest ecosystems. Nauka, Moscow, p 235. ISBN 5-02-022568-1

    Google Scholar 

  • Sheahan JJ, Ribeiro-Neto L, Sussman MR (1993) Caesium-insensitive mutants of Arabidopsis thaliana. Plant J 3:647–656

    Article  CAS  Google Scholar 

  • Shenber MA, Eriksson Å (1993) Sorption behaviour of caesium in various soils. J Environ Radioact 19:41–51

    Article  CAS  Google Scholar 

  • Shoji S, Ito T, Saigusa M, Yamada I (1985) Properties of nonallophanic Andosols from Japan. Soil Sci 140:264–277

    Article  CAS  Google Scholar 

  • Thiry Y, Myttenaere C (1993) Behaviour of radiocaesium in forest multilayered soils. J Environ Radioact 18:247–257

    Google Scholar 

  • Unterweger MP (2002) Half-life measurements results at the National Institute of Standards and Technology. Appl Radiat Isot 56:125–130

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2000) Mechanisms of caesium uptake by plants. New Phytol 147:241–256

    Article  CAS  Google Scholar 

  • White PJ, Swarup K, Escobar-Gutiérrez AJ, Bowen HC, Willey NJ, Broadley MR (2003) Selecting plants to minimize radiocaesium in the food chain. Plant Soil 249:177–186

    Article  CAS  Google Scholar 

  • Zhu YG, Smolders E (2000) Plant uptake of radiocaesium: A review of mechanisms, regulation and application. J Exp Bot 51:1635–1645

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Dubchak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dubchak, S. (2017). Distribution of Caesium in Soil and its Uptake by Plants. In: Gupta, D., Walther, C. (eds) Impact of Cesium on Plants and the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-41525-3_1

Download citation

Publish with us

Policies and ethics