Skip to main content

Adhesion GPCRs as Novel Actors in Neural and Glial Cell Functions: From Synaptogenesis to Myelination

  • Chapter
  • First Online:
Adhesion G Protein-coupled Receptors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hamann J, Aust G, Araç D, Engel FB, Formstone C, Fredriksson R et al (2015) International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol Rev 67(2):338–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Araç D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Sudhof TC et al (2012) A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J 31(6):1364–1378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Prömel S, Frickenhaus M, Hughes S, Mestek L, Staunton D, Woollard A et al (2012) The GPS motif is a molecular switch for bimodal activities of adhesion class G protein-coupled receptors. Cell Rep 2(2):321–331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Langenhan T, Aust G, Hamann J (2013) Sticky signaling–adhesion class G protein-coupled receptors take the stage. Sci Signal 6(276):re3

    Article  PubMed  CAS  Google Scholar 

  5. Araç D, Sträter N, Seiradake E (2016) Understanding the structural basis of adhesion GPCR functions. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  6. Nieberler M, Kittel RJ, Petrenko AG, Lin H-H, Langenhan T (2016) Control of adhesion GPCR function through proteolytic processing. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  7. Schiöth HB, Nordstrom KJ, Fredriksson R (2010) The adhesion GPCRs; gene repertoire, phylogeny and evolution. Adv Exp Med Biol 706:1–13

    Article  PubMed  Google Scholar 

  8. Harty BL, Krishnan A, Sanchez NE, Schiöth HB, Monk KR (2015) Defining the gene repertoire and spatiotemporal expression profiles of adhesion G protein-coupled receptors in zebrafish. BMC Genomics 16:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Krishnan A, Nijmeijer S, de Graaf C, Schiöth HB (2016) Classification, nomenclature and structural aspects of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  10. Nijmeijer S, Wolf S, Ernst OP, de Graaf C (2016) 7TM domain structure of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  11. Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R et al (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303(5666):2033–2036

    Article  CAS  PubMed  Google Scholar 

  12. Piao X, Chang BS, Bodell A, Woods K, Benzeev B, Topcu M et al (2005) Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Ann Neurol 58(5):680–687

    Article  CAS  PubMed  Google Scholar 

  13. Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J, Yang MY et al (2011) GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proc Natl Acad Sci U S A 108(14):5759–5764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ichtchenko K, Bittner MA, Krasnoperov V, Little AR, Chepurny O, Holz RW et al (1999) A novel ubiquitously expressed alpha-latrotoxin receptor is a member of the CIRL family of G-protein-coupled receptors. J Biol Chem 274(9):5491–5498

    Article  CAS  PubMed  Google Scholar 

  15. Sugita S, Ichtchenko K, Khvotchev M, Sudhof TC (1998) alpha-Latrotoxin receptor CIRL/latrophilin 1 (CL1) defines an unusual family of ubiquitous G-protein-linked receptors. G-protein coupling not required for triggering exocytosis. J Biol Chem 273(49):32715–32724

    Article  CAS  PubMed  Google Scholar 

  16. Boucard AA, Maxeiner S, Sudhof TC (2014) Latrophilins function as heterophilic cell-adhesion molecules by binding to teneurins: regulation by alternative splicing. J Biol Chem 289(1):387–402

    Article  CAS  PubMed  Google Scholar 

  17. Kreienkamp HJ, Zitzer H, Gundelfinger ED, Richter D, Bockers TM (2000) The calcium-independent receptor for alpha-latrotoxin from human and rodent brains interacts with members of the ProSAP/SSTRIP/Shank family of multidomain proteins. J Biol Chem 275(42):32387–32390

    Article  CAS  PubMed  Google Scholar 

  18. Tobaben S, Sudhof TC, Stahl B (2000) The G protein-coupled receptor CL1 interacts directly with proteins of the Shank family. J Biol Chem 275(46):36204–36210

    Article  CAS  PubMed  Google Scholar 

  19. Vakonakis I, Langenhan T, Prömel S, Russ A, Campbell ID (2008) Solution structure and sugar-binding mechanism of mouse latrophilin-1 RBL: a 7TM receptor-attached lectin-like domain. Structure 16(6):944–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silva JP, Lelianova VG, Ermolyuk YS, Vysokov N, Hitchen PG, Berninghausen O et al (2011) Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc Natl Acad Sci U S A 108(29):12113–12118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Sullivan ML, de Wit J, Savas JN, Comoletti D, Otto-Hitt S, Yates JR III et al (2012) FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73(5):903–910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lelianova VG, Davletov BA, Sterling A, Rahman MA, Grishin EV, Totty NF et al (1997) Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem 272(34):21504–21508

    Article  CAS  PubMed  Google Scholar 

  23. O’Sullivan ML, Martini F, von Daake S, Comoletti D, Ghosh A (2014) LPHN3, a presynaptic adhesion-GPCR implicated in ADHD, regulates the strength of neocortical layer 2/3 synaptic input to layer 5. Neural Dev 9:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lange M, Norton W, Coolen M, Chaminade M, Merker S, Proft F et al (2012) The ADHD-linked gene Lphn3.1 controls locomotor activity and impulsivity in zebrafish. Mol Psychiatry 17(9):855

    Article  CAS  PubMed  Google Scholar 

  25. Guest M, Bull K, Walker RJ, Amliwala K, O’Connor V, Harder A et al (2007) The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans. Int J Parasitol 37(14):1577–1588

    Article  CAS  PubMed  Google Scholar 

  26. Strutt D, Schnabel R, Fiedler F, Prömel S (2016) Adhesion GPCRs govern polarity of epithelia and cell migration. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  27. Steimel A, Wong L, Najarro EH, Ackley BD, Garriga G, Hutter H (2010) The Flamingo ortholog FMI-1 controls pioneer-dependent navigation of follower axons in C. elegans. Development 137(21):3663–3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bao H, Berlanga ML, Xue M, Hapip SM, Daniels RW, Mendenhall JM et al (2007) The atypical cadherin flamingo regulates synaptogenesis and helps prevent axonal and synaptic degeneration in Drosophila. Mol Cell Neurosci 34(4):662–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao FB, Kohwi M, Brenman JE, Jan LY, Jan YN (2000) Control of dendritic field formation in Drosophila: the roles of flamingo and competition between homologous neurons. Neuron 28(1):91–101

    Article  CAS  PubMed  Google Scholar 

  30. Formstone CJ, Little PF (2001) The flamingo-related mouse Celsr family (Celsr1-3) genes exhibit distinct patterns of expression during embryonic development. Mech Dev 109(1):91–94

    Article  CAS  PubMed  Google Scholar 

  31. Tissir F, De-Backer O, Goffinet AM, Lambert de Rouvroit C (2002) Developmental expression profiles of Celsr (Flamingo) genes in the mouse. Mech Dev 112(1–2):157–160

    Article  CAS  PubMed  Google Scholar 

  32. Matsubara D, Horiuchi SY, Shimono K, Usui T, Uemura T (2011) The seven-pass transmembrane cadherin Flamingo controls dendritic self-avoidance via its binding to a LIM domain protein, Espinas, in Drosophila sensory neurons. Genes Dev 25(18):1982–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Wang H, Li X, Li Y (2016) Epithelial microRNA-9a regulates dendrite growth through Fmi-Gq signaling in Drosophila sensory neurons. Dev Neurobiol 76(2):225–237

    Article  CAS  PubMed  Google Scholar 

  34. Kimura H, Usui T, Tsubouchi A, Uemura T (2006) Potential dual molecular interaction of the Drosophila 7-pass transmembrane cadherin Flamingo in dendritic morphogenesis. J Cell Sci 119(Pt 6):1118–1129

    Article  CAS  PubMed  Google Scholar 

  35. Shima Y, Copeland NG, Gilbert DJ, Jenkins NA, Chisaka O, Takeichi M et al (2002) Differential expression of the seven-pass transmembrane cadherin genes Celsr1-3 and distribution of the Celsr2 protein during mouse development. Dev Dyn 223(3):321–332

    Article  CAS  PubMed  Google Scholar 

  36. Shima Y, Kengaku M, Hirano T, Takeichi M, Uemura T (2004) Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin. Dev Cell 7(2):205–216

    Article  CAS  PubMed  Google Scholar 

  37. Shima Y, Kawaguchi SY, Kosaka K, Nakayama M, Hoshino M, Nabeshima Y et al (2007) Opposing roles in neurite growth control by two seven-pass transmembrane cadherins. Nat Neurosci 10(8):963–969

    Article  CAS  PubMed  Google Scholar 

  38. Tolias KF, Duman JG, Um K (2011) Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog Neurobiol 94(2):133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koh JT, Lee ZH, Ahn KY, Kim JK, Bae CS, Kim HH et al (2001) Characterization of mouse brain-specific angiogenesis inhibitor 1 (BAI1) and phytanoyl-CoA alpha-hydroxylase-associated protein 1, a novel BAI1-binding protein. Brain Res Mol Brain Res 87(2):223–237

    Article  CAS  PubMed  Google Scholar 

  40. Kee HJ, Koh JT, Kim MY, Ahn KY, Kim JK, Bae CS et al (2002) Expression of brain-specific angiogenesis inhibitor 2 (BAI2) in normal and ischemic brain: involvement of BAI2 in the ischemia-induced brain angiogenesis. J Cereb Blood Flow Metab 22(9):1054–1067

    Article  CAS  PubMed  Google Scholar 

  41. Lanoue V, Usardi A, Sigoillot SM, Talleur M, Iyer K, Mariani J et al (2013) The adhesion-GPCR BAI3, a gene linked to psychiatric disorders, regulates dendrite morphogenesis in neurons. Mol Psychiatry 18(8):943–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sigoillot SM, Iyer K, Binda F, Gonzalez-Calvo I, Talleur M, Vodjdani G et al (2015) The secreted protein C1QL1 and its receptor BAI3 control the synaptic connectivity of excitatory inputs converging on cerebellar Purkinje cells. Cell Rep 10(5):820–832

    Article  CAS  Google Scholar 

  43. Okajima D, Kudo G, Yokota H (2011) Antidepressant-like behavior in brain-specific angiogenesis inhibitor 2-deficient mice. J Physiol Sci 61(1):47–54

    Article  PubMed  Google Scholar 

  44. Duman JG, Tzeng CP, Tu YK, Munjal T, Schwechter B, Ho TS et al (2013) The adhesion-GPCR BAI1 regulates synaptogenesis by controlling the recruitment of the Par3/Tiam1 polarity complex to synaptic sites. J Neurosci 33(16):6964–6978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stephenson JR, Paavola KJ, Schaefer SA, Kaur B, Van Meir EG, Hall RA (2013) Brain-specific angiogenesis inhibitor-1 signaling, regulation, and enrichment in the postsynaptic density. J Biol Chem 288(31):22248–22256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oda K, Shiratsuchi T, Nishimori H, Inazawa J, Yoshikawa H, Taketani Y et al (1999) Identification of BAIAP2 (BAI-associated protein 2), a novel human homologue of hamster IRSp53, whose SH3 domain interacts with the cytoplasmic domain of BAI1. Cytogenet Cell Genet 84(1–2):75–82

    Article  CAS  PubMed  Google Scholar 

  47. Zhu D, Li C, Swanson AM, Villalba RM, Guo J, Zhang Z et al (2015) BAI1 regulates spatial learning and synaptic plasticity in the hippocampus. J Clin Invest 125(4):1497–1508

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bolliger MF, Martinelli DC, Sudhof TC (2011) The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins. Proc Natl Acad Sci U S A 108(6):2534–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goldin M, Segal M (2003) Protein kinase C and ERK involvement in dendritic spine plasticity in cultured rodent hippocampal neurons. Eur J Neurosci 17(12):2529–2539

    Article  PubMed  Google Scholar 

  50. Tolias KF, Bikoff JB, Burette A, Paradis S, Harrar D, Tavazoie S et al (2005) The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45(4):525–538

    Article  CAS  PubMed  Google Scholar 

  51. Zhang H, Macara IG (2006) The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat Cell Biol 8(3):227–237

    Article  CAS  PubMed  Google Scholar 

  52. Van Aelst L, Cline HT (2004) Rho GTPases and activity-dependent dendrite development. Curr Opin Neurobiol 14(3):297–304

    Article  PubMed  CAS  Google Scholar 

  53. Cerri C, Fabbri A, Vannini E, Spolidoro M, Costa M, Maffei L et al (2011) Activation of Rho GTPases triggers structural remodeling and functional plasticity in the adult rat visual cortex. J Neurosci 31(42):15163–15172

    Article  CAS  PubMed  Google Scholar 

  54. Kakegawa W, Mitakidis N, Miura E, Abe M, Matsuda K, Takeo YH et al (2015) Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum. Neuron 85(2):316–329

    Article  CAS  PubMed  Google Scholar 

  55. Collins MO, Husi H, Yu L, Brandon JM, Anderson CN, Blackstock WP et al (2006) Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 97(Suppl 1):16–23

    Article  CAS  PubMed  Google Scholar 

  56. Selimi F, Cristea IM, Heller E, Chait BT, Heintz N (2009) Proteomic studies of a single CNS synapse type: the parallel fiber/purkinje cell synapse. PLoS Biol 7(4), e83

    Article  PubMed  CAS  Google Scholar 

  57. Iijima T, Miura E, Watanabe M, Yuzaki M (2010) Distinct expression of C1q-like family mRNAs in mouse brain and biochemical characterization of their encoded proteins. Eur J Neurosci 31(9):1606–1615

    PubMed  Google Scholar 

  58. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6(9):671–682

    Article  CAS  PubMed  Google Scholar 

  59. Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468(7321):244–252

    Article  CAS  PubMed  Google Scholar 

  60. Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C et al (2009) A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325(5946):1402–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Monk KR, Oshima K, Jors S, Heller S, Talbot WS (2011) Gpr126 is essential for peripheral nerve development and myelination in mammals. Development 138(13):2673–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M (1998) Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18(1):237–250

    CAS  PubMed  Google Scholar 

  63. Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA et al (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15(1):66–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Finzsch M, Schreiner S, Kichko T, Reeh P, Tamm ER, Bosl MR et al (2010) Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage. J Cell Biol 189(4):701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wood PM (1976) Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res 115(3):361–375

    Article  CAS  PubMed  Google Scholar 

  66. Salzer JL, Williams AK, Glaser L, Bunge RP (1980) Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction. J Cell Biol 84(3):753–766

    Article  CAS  PubMed  Google Scholar 

  67. Sobue G, Brown MJ, Kim SU, Pleasure D (1984) Axolemma is a mitogen for human Schwann cells. Ann Neurol 15(5):449–452

    Article  CAS  PubMed  Google Scholar 

  68. Mokuno K, Sobue G, Reddy UR, Wurzer J, Kreider B, Hotta H et al (1988) Regulation of Schwann cell nerve growth factor receptor by cyclic adenosine 3’,5’-monophosphate. J Neurosci Res 21(2-4):465–472

    Article  CAS  PubMed  Google Scholar 

  69. Monuki ES, Weinmaster G, Kuhn R, Lemke G (1989) SCIP: a glial POU domain gene regulated by cyclic AMP. Neuron 3(6):783–793

    Article  CAS  PubMed  Google Scholar 

  70. Scherer SS, Wang DY, Kuhn R, Lemke G, Wrabetz L, Kamholz J (1994) Axons regulate Schwann cell expression of the POU transcription factor SCIP. J Neurosci 14(4):1930–1942

    CAS  PubMed  Google Scholar 

  71. Mogha A, Benesh AE, Patra C, Engel FB, Schoneberg T, Liebscher I et al (2013) Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J Neurosci 33(46):17976–17985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Glenn TD, Talbot WS (2013) Analysis of Gpr126 function defines distinct mechanisms controlling the initiation and maturation of myelin. Development 140(15):3167–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Petersen SC, Luo R, Liebscher I, Giera S, Jeong SJ, Mogha A et al (2015) The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron 85(4):755–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Patra C, van Amerongen MJ, Ghosh S, Ricciardi F, Sajjad A, Novoyatleva T et al (2013) Organ-specific function of adhesion G protein-coupled receptor GPR126 is domain-dependent. Proc Natl Acad Sci U S A 110(42):16898–16903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yona S, Lin HH, Siu WO, Gordon S, Stacey M (2008) Adhesion-GPCRs: emerging roles for novel receptors. Trends Biochem Sci 33(10):491–500

    Article  CAS  PubMed  Google Scholar 

  76. Liebscher I, Schon J, Petersen SC, Fischer L, Auerbach N, Demberg LM et al (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9(6):2018–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A 112(19):6194–6199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Demberg LM, Rothemund S, Schoneberg T, Liebscher I (2015) Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 464(3):743–747

    Article  CAS  PubMed  Google Scholar 

  79. Wilde C, Fischer L, Lede V, Kirchberger J, Rothemund S, Schoneberg T et al (2016) The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J 30(2):666–673

    Article  CAS  PubMed  Google Scholar 

  80. Liebscher I, Schöneberg T (2016) Tethered agonism: a common activation mechanism of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  81. Kishore A, Hall RA (2016) Versatile signaling activity of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  82. Paavola KJ, Sidik H, Zuchero JB, Eckart M, Talbot WS (2014) Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. Sci Signal 7(338):ra76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Scholz N, Gehring J, Guan C, Ljaschenko D, Fischer R, Lakshmanan V et al (2015) The adhesion GPCR latrophilin/CIRL shapes mechanosensation. Cell Rep 11(6):866–874

    Article  CAS  PubMed  Google Scholar 

  84. Scholz N, Monk KR, Kittel RJ, Langenhan T (2016) Adhesion GPCRs as a putative class of metabotropic mechanosensors. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  85. Arthur-Farraj P, Wanek K, Hantke J, Davis CM, Jayakar A, Parkinson DB et al (2011) Mouse Schwann cells need both NRG1 and cyclic AMP to myelinate. Glia 59(5):720–733

    Article  PubMed  Google Scholar 

  86. Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330(6005):779–782

    Article  CAS  PubMed  Google Scholar 

  87. Aggarwal S, Yurlova L, Simons M (2011) Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol 21(10):585–593

    Article  CAS  PubMed  Google Scholar 

  88. Campbell K, Gotz M (2002) Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci 25(5):235–238

    Article  CAS  PubMed  Google Scholar 

  89. Simons M, Snaidero N, Aggarwal S (2012) Cell polarity in myelinating glia: from membrane flow to diffusion barriers. Biochim Biophys Acta 1821(8):1146–1153

    Article  CAS  PubMed  Google Scholar 

  90. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176

    Article  CAS  PubMed  Google Scholar 

  91. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278

    Article  CAS  PubMed  Google Scholar 

  92. Piao X, Basel-Vanagaite L, Straussberg R, Grant PE, Pugh EW, Doheny K et al (2002) An autosomal recessive form of bilateral frontoparietal polymicrogyria maps to chromosome 16q12.2-21. Am J Hum Genet 70(4):1028–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR et al (2015) The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun 6:6121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR (2015) The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Galpha12/13 and RhoA. Nat Commun 6:6122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jin Z, Tietjen I, Bu L, Liu-Yesucevitz L, Gaur SK, Walsh CA et al (2007) Disease-associated mutations affect GPR56 protein trafficking and cell surface expression. Hum Mol Genet 16(16):1972–1985

    Article  CAS  PubMed  Google Scholar 

  96. Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H (2008) Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem 283(21):14469–14478

    Article  CAS  PubMed  Google Scholar 

  97. Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X (2011) G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 108(31):12925–12930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liang X, Draghi NA, Resh MD (2004) Signaling from integrins to Fyn to Rho family GTPases regulates morphologic differentiation of oligodendrocytes. J Neurosci 24(32):7140–7149

    Article  CAS  PubMed  Google Scholar 

  99. Shin D, Lin ST, Fu YH, Ptacek LJ (2013) Very large G protein-coupled receptor 1 regulates myelin-associated glycoprotein via Galphas/Galphaq-mediated protein kinases A/C. Proc Natl Acad Sci U S A 110(47):19101–19106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bonaglia MC, Marelli S, Novara F, Commodaro S, Borgatti R, Minardo G et al (2010) Genotype-phenotype relationship in three cases with overlapping 19p13.12 microdeletions. Eur J Hum Genet 18(12):1302–1309

    Article  PubMed  PubMed Central  Google Scholar 

  102. Arcos-Burgos M, Jain M, Acosta MT, Shively S, Stanescu H, Wallis D et al (2010) A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol Psychiatry 15(11):1053–1066

    Article  CAS  PubMed  Google Scholar 

  103. Domené S, Stanescu H, Wallis D, Tinloy B, Pineda DE, Kleta R et al (2011) Screening of human LPHN3 for variants with a potential impact on ADHD susceptibility. Am J Med Genet B Neuropsychiatr Genet 156B(1):11–18

    Article  PubMed  CAS  Google Scholar 

  104. Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D, Jin X et al (2012) Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151(7):1431–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Toma C, Hervas A, Balmana N, Vilella E, Aguilera F, Cusco I et al (2011) Association study of six candidate genes asymmetrically expressed in the two cerebral hemispheres suggests the involvement of BAIAP2 in autism. J Psychiatr Res 45(2):280–282

    Article  PubMed  Google Scholar 

  106. DeRosse P, Lencz T, Burdick KE, Siris SG, Kane JM, Malhotra AK (2008) The genetics of symptom-based phenotypes: toward a molecular classification of schizophrenia. Schizophr Bull 34(6):1047–1053

    Article  PubMed  PubMed Central  Google Scholar 

  107. Liao HM, Chao YL, Huang AL, Cheng MC, Chen YJ, Lee KF et al (2012) Identification and characterization of three inherited genomic copy number variations associated with familial schizophrenia. Schizophr Res 139(1-3):229–236

    Article  PubMed  Google Scholar 

  108. McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK (2012) A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS One 7(2), e32091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu QR, Drgon T, Johnson C, Walther D, Hess J, Uhl GR (2006) Addiction molecular genetics: 639,401 SNP whole genome association identifies many “cell adhesion” genes. Am J Med Genet B Neuropsychiatr Genet 141B(8):918–925

    Article  CAS  PubMed  Google Scholar 

  110. Lubetzki C, Stankoff B (2014) Demyelination in multiple sclerosis. Handb Clin Neurol 122:89–99

    Article  PubMed  Google Scholar 

  111. Ravenscroft G, Nolent F, Rajagopalan S, Meireles AM, Paavola KJ, Gaillard D et al (2015) Mutations of GPR126 are responsible for severe arthrogryposis multiplex congenita. Am J Hum Genet 96(6):955–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shorer Z, Philpot J, Muntoni F, Sewry C, Dubowitz V (1995) Demyelinating peripheral neuropathy in merosin-deficient congenital muscular dystrophy. J Child Neurol 10(6):472–475

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the following agencies for their support: the Washington University School of Medicine Institute of Clinical and Translational Sciences, NIH CTSA #UL1 TR000448 (K.R.M. and B.L.H.); the National Institutes of Health, F31NS094004 (B.L.H.), R01 NS079445 and R01 HD080601 (K.R.M.), R01 NS094164, and R56 NS085201 (X.P.); the National Multiple Sclerosis Society, RG-1501-02577 (X.P.), the Agence Nationale de la Recherche ANR-13-SAMA-0010-01 (F.S.) and ANR-10-LABX-54 MEMO LIFE (S.M.S. and F.S.); and the Centre national de la recherche scientifique (CNRS) and Institut National de la Santé et de la Recherche Médicale (INSERM), ATIP AVENIR (F.S.), and NeRF Ile de France (S.M.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Séverine M. Sigoillot or Breanne L. Harty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Sigoillot, S.M., Monk, K.R., Piao, X., Selimi, F., Harty, B.L. (2016). Adhesion GPCRs as Novel Actors in Neural and Glial Cell Functions: From Synaptogenesis to Myelination. In: Langenhan, T., Schöneberg, T. (eds) Adhesion G Protein-coupled Receptors. Handbook of Experimental Pharmacology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-41523-9_12

Download citation

Publish with us

Policies and ethics