Skip to main content

Specialized Residue Number Systems

  • Chapter
  • First Online:
Residue Number Systems

Abstract

Several Residue number systems which lead to certain advantages in Signal Processing applications have been described in literature. These are based on concepts of Quadratic Residues, Polynomial Residue Number systems, Modulus replication, logarithmic number systems and those using specialized moduli. These are considered in detail. Applications of these concepts and techniques for achieving fault tolerance are described in later Chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.K. Jenkins, J.V. Krogmeier, The design of dual-mode complex signal processors based on Quadratic modular number codes. IEEE Trans. Circuits Syst. 34, 354–364 (1987)

    Article  Google Scholar 

  2. G.A. Jullien, R. Krishnan, W.C. Miller, Complex digital signal processing over finite rings. IEEE Trans. Circuits Syst. 34, 365–377 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. M.A. Soderstrand, G.D. Poe, Application of quadratic-like complex residue number systems to ultrasonics, in IEEE International Conference on ASSP, vol. 2, pp. 28.A5.1–28.A5.4 (1984)

    Google Scholar 

  4. R. Krishnan, G.A. Jullien, W.C. Miller, Complex digital signal processing using quadratic residue number systems. IEEE Trans. ASSP 34, 166–177 (1986)

    Article  Google Scholar 

  5. V. Paliouras, T. Stouraitis, Novel high radix residue number system architectures. IEEE Trans. Circuits Syst. II 47, 1059–1073 (2000)

    Article  MATH  Google Scholar 

  6. V. Paliouras, T. Stouraitis, Novel high-radix residue number system multipliers and adders, in Proceedings of ISCAS, pp. 451–454 (1999)

    Google Scholar 

  7. I. Kouretas, V. Paliouras, A low-complexity high-radix RNS multiplier. IEEE Trans. Circuits Syst. Regul. Pap. 56, 2449–2462 (2009)

    Article  MathSciNet  Google Scholar 

  8. I. Kouretas, V. Paliouras, High radix redundant circuits for RNS moduli r n-1, rn and rn + 1, in Proceedings of IEEE ISCAS, vol. V, pp. 229–232 (2003)

    Google Scholar 

  9. I. Kouretas, V. Paliouras, High-radix r n-1 modulo multipliers and adders, in Proceedings of 9th IEEE International Conference on Electronics, Circuits and Systems, vol. II, pp. 561–564 (2002)

    Google Scholar 

  10. M. Abdallah, A. Skavantzos, On multi-moduli residue number systems with moduli of the form r a, r b-1 and r c+1. IEEE Trans. Circuits Syst. 52, 1253–1266 (2005)

    Article  MathSciNet  Google Scholar 

  11. A. Skavantzos, F.J. Taylor, On the polynomial residue number system. IEEE Trans. Signal Process. 39, 376–382 (1991)

    Article  MATH  Google Scholar 

  12. A. Skavantzos, T. Stouraitis, Polynomial residue complex signal processing. IEEE Trans. Circuits Syst. 40, 342–344 (1993)

    Article  MATH  Google Scholar 

  13. M.C. Yang, J.L. Wu, A new interpretation of “Polynomial Residue Number System”. IEEE Trans. Signal Process. 42, 2190–2191 (1994)

    Article  Google Scholar 

  14. V. Paliouras, A. Skavantzos, T. Stouraitis, Multi-voltage low power convolvers using the Polynomial Residue Number System, in Proceedings 12th ACM Great Lakes Symposium on VLSI, pp. 7–11 (2002)

    Google Scholar 

  15. M. Abdallah, A. Skavantzos, The multipolynomial Channel Polynomial Residue Arithmetic System. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 46, 165–171 (1999)

    Article  MATH  Google Scholar 

  16. V. Paliouras, A. Skavantzos, Novel forward and inverse PRNS converters of reduced computational complexity, in 36th Asilomar Conference on Signals, Systems and Computers, pp. 1603–1607 (2002)

    Google Scholar 

  17. H.C. Shyu, T.K. Truong, I.S. Reed, A complex integer multiplier using the quadratic-polynomial residue number system with numbers of form 22n+1. IEEE Trans. Comput. C-36, 1255–1258 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Skavantzos, N. Mitash, Implementation issues of 2-dimensional polynomial multipliers for signal processing using residue arithmetic, in IEE Proceedings-E, vol. 140, pp. 45–53 (1993)

    Google Scholar 

  19. A. Skavantzos, N. Mitash, Computing large polynomial products using modular arithmetic. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 39, 252–254 (1992)

    Article  Google Scholar 

  20. B. Singh, M.U. Siddiqui, Multivariate polynomial products over modular rings using residue arithmetic. IEEE Trans. Signal Process. 43, 1310–1312 (1995)

    Article  MATH  Google Scholar 

  21. P.E. Beckmann, B.R. Musicus, Fast fault-tolerant digital convolution using a polynomial Residue Number System. IEEE Trans. Signal Process. 41, 2300–2313 (1993)

    Article  MATH  Google Scholar 

  22. M.G. Parker, M. Benaissa, GF(pm) multiplication using Polynomial Residue umber Systems. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 42, 718–721 (1995)

    Article  Google Scholar 

  23. J. Chu, M. Benaissa, Polynomial residue number system GF(2m) multiplier using trinomials, in 17th European Signal Processing Conference (EUSIPCO 2009), Glasgow, Scotland, pp. 958–962 (2009)

    Google Scholar 

  24. J. Chu, M. Benaissa, GF(2m) Multiplier using Polynomial Residue Number System, in IEEE Asia Pacific Conference on Circuits and Systems, pp. 1514–1517 (2008)

    Google Scholar 

  25. J. Chu, M. Benaissa, A novel architecture of implementing error detecting AES using PRNS, in 14th Euromicro Conference on Digital System Design, pp. 667–673 (2011)

    Google Scholar 

  26. N.M. Wigley, G.A. Jullien, D. Reaume, Large dynamic range computations over small finite rings. IEEE Trans. Comput. 43, 78–86 (1994)

    Article  Google Scholar 

  27. L. Imbert, G.A. Jullien, Fault tolerant computation of large inner products. Electron. Lett. 37, 551–552 (2001)

    Article  Google Scholar 

  28. L. Imbert, V. Dimitrov, G.A. Jullien, Fault-tolerant computations over replicated finite rings. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50, 858–864 (2003)

    Article  MathSciNet  Google Scholar 

  29. D.E. Knuth, The Art of Computer Programming. Seminumerical algorithms, vol. 2, 3rd edn. (Addison-Wesley, Boston, 1997)

    MATH  Google Scholar 

  30. L. Imbert, G. A. Jullien. Efficient fault-tolerant arithmetic using a symmetrical modulus replication RNS. in 2001 IEEE Workshop on Signal Processing Systems, Design and Implementation, SIPS’01, pp. 93–100 (2001)

    Google Scholar 

  31. L. Imbert, G.A. Jullien, V. Dimitrov, A. Garg, Fault tolerant complex FIR filter architectures using a redundant MRRNS, in Conference Records of The 35th Asilomar Conference on Signals, Systems, and Computers, vol. 2, pp. 1222–1226 (2001)

    Google Scholar 

  32. N.M. Wigley, G.A. Jullien, On modulus replication for residue arithmetic computations of complex inner products. IEEE Trans. Comput. 39(8), 1065–1076 (1990)

    Article  Google Scholar 

  33. P. Chan, G.A. Jullien, L. Imbert, V. Dimitrov, G.H. McGibney, Fault-tolerant computations within complex FIR filters, in 2004 IEEE Workshop on Signal Processing Systems, Design and Implementation, SIPS’04, pp. 316–320 (2004)

    Google Scholar 

  34. I. Steiner, P. Chan, L. Imbert, G.A. Jullien, V. Dimitrov, G.H. McGibney, A fault-tolerant modulus replication complex FIR filter, in Proceedings 16th IEEE International Conference on Application-Specific Systems, Architecture Processors, ASAP’05, pp. 387–392 (2005)

    Google Scholar 

  35. C. Radhakrishnan, W.K. Jenkins, Z. Raza, R.M. Nickel, Fault tolerant Fermat Number Transform domain adaptive filters based on modulus replication RNS architectures, in Proceedings of 24th Asilomar Conference on Signals, Systems and Computers, pp. 1365–1369 (2009)

    Google Scholar 

  36. A.P. Preethy, D. Radhakrishnan, RNS-based logarithmic adder, in IEE Proceedings—Computers and Digital Techniques, vol. 147, pp. 283–287 (2000)

    Google Scholar 

  37. M.L. Gardner, L. Yu, J.W. Muthumbi, O.B. Mbowe, D. Radhakrishnan, A.P. Preethy, ROM efficient logarithmic addition in RNS, in Proceedings of 7th International Symposium on Consumer Electronics, ISCE-2003, Sydney (December 2003)

    Google Scholar 

  38. M.G. Arnold, The residue Logarithmic Number system: theory and implementation, in 17th IEEE Symposium on Computer Arithmetic, Cape Code, pp. 196–205 (2005)

    Google Scholar 

Further Reading

  • J.H. Cozzens, L.A. Fenkelstein, Computing the discrete Fourier transform using residue number systems in a ring of algebraic integers. IEEE Trans. Inf. Theory 31, 580–588 (1985)

    Article  MathSciNet  Google Scholar 

  • H.K. Garg, F.V.C. Mendis, On fault-tolerant Polynomial Residue Number systems, in Conference Record of the 31st Asilomar Conference on Signals, Systems and Computers, pp. 206–209 (1997)

    Google Scholar 

  • G.A. Jullien, W. Luo, N.M. Wigley, High throughput VLSI DSP using replicated finite rings, J. VLSI Signal Process. 14(2), 207–220 (1996)

    Article  Google Scholar 

  • J.B. Martens, M.C. Vanwormhoudt, Convolutions of long integer sequences by means of number theoretic transforms over residue class polynomial rings. IEEE Trans. Acoust. Speech Signal Process. 31, 1125–1134 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • J.D. Mellott, J.C. Smith, F.J. Taylor, The Gauss machine: a Galois enhanced Quadratic residue Number system Systolic array, in Proceedings of 11th Symposium on Computer Arithmetic, pp. 156–162 (1993)

    Google Scholar 

  • M. Shahkarami, G.A. Jullien, R. Muscedere, B. Li, W.C. Miller, General purpose FIR filter arrays using optimized redundancy over direct product polynomial rings, in 32nd Asilomar Conference on Signals, Systems & Computers, vol. 2, pp. 1209–1213 (1998)

    Google Scholar 

  • N. Wigley, G.A. Jullien, W.C. Miller, The modular replication RNS (MRRNS): a comparative study, in Proceedings of 24th Asilomar Conference on Signals, Systems and Computers, pp. 836–840 (1990)

    Google Scholar 

  • N. Wigley, G.A. Jullien, D. Reaume, W.C. Miller, Small moduli replications in the MRRNS, in Proceedings of the 10th IEEE Symposium on Computer Arithmetic, Grenoble, France, June 26–28, pp. 92–99 (1991)

    Google Scholar 

  • G.S. Zelniker, F.J. Taylor, Prime blocklength discrete Fourier transforms using the Polynomial Residue Number System, in 24th Asilomar Conference on Signals, Systems and Computers, pp. 314–318 (1990)

    Google Scholar 

  • G.S. Zelniker, F.J. Taylor, On the reduction in multiplicative complexity achieved by the Polynomial Residue Number System. IEEE Trans. Signal Process. 40, 2318–2320 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ananda Mohan, P.V. (2016). Specialized Residue Number Systems. In: Residue Number Systems. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-41385-3_8

Download citation

Publish with us

Policies and ethics