Skip to main content

Scaling, Base Extension, Sign Detection and Comparison in RNS

  • Chapter
  • First Online:
Residue Number Systems

Abstract

It is often required to scale a number in DSP applications. Scaling by a power of two or by one modulus or product of few moduli will be desired. Division by arbitrary integer is exactly possible in RNS if the remainder of division is known to be zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.S. Szabo, R.I. Tanaka, Residue Arithmetic and Its Applications to Computer Technology (Mc-Graw Hill, New-York, 1967)

    MATH  Google Scholar 

  2. A.P. Shenoy, R. Kumaresan, Fast base extension using a redundant modulus in RNS. IEEE Trans. Comput. 38, 293–297 (1989)

    Article  MATH  Google Scholar 

  3. A.P. Shenoy, R. Kumaresan, A fast and accurate scaling technique for high-speed signal processing. IEEE Trans. Acoust. Speech Signal Process. 37, 929–937 (1989)

    Article  Google Scholar 

  4. G.A. Jullien, Residue number scaling and other operations using ROM arrays. IEEE Trans. Comput. 27(4), 325–337 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Garcia, A. Lloris, A look up scheme for scaling in the RNS. IEEE Trans. Comput. 48, 748–751 (1999)

    Article  Google Scholar 

  6. F. Barsi, M.C. Pinotti, Fast base extension and precise scaling in RNS for look-up table implementation. IEEE Trans. Signal Process. 43, 2427–2430 (1995)

    Article  Google Scholar 

  7. M. Griffin, M. Sousa, F. Taylor, Efficient scaling in the residue number System, in Proceedings of IEEE ASSP, pp. 1075–1078 (May 1989)

    Google Scholar 

  8. U. Meyer-Base, T. Stouraitis, New power-of-2 RNS scaling scheme for cell-based IC design. IEEE Trans. Very Large Scale Integr. VLSI Syst. 11, 280–283 (2003)

    Article  Google Scholar 

  9. G.C. Cardarilli, A. Del Re, A. Nannarelli, M. Re, Programmable power-of-two RNS scaler and its application to a QRNS polyphase filter, in Proceedings of 2005. IEEE International Symposium on Circuits and Systems, vol. 2, pp 1102–1105 (May 2005)

    Google Scholar 

  10. T.V. Vu, Efficient implementations of the Chinese remainder theorem for sign detection and residue decoding. IEEE Trans. Comput. 34, 646–651 (1985)

    MATH  Google Scholar 

  11. Y. Kong, B. Phillips, Fast scaling in the Residue Number System, IEEE Trans. Very Large Scale Integr. VLSI Syst. 17, 443–447 (2009)

    Article  Google Scholar 

  12. C.H. Chang, J.Y.S. Low, Simple, fast and exact RNS scaler for the three moduli set {2n-1, 2n, 2n+1}. IEEE Trans. Circuits Syst. I Reg. Pap. 58, 2686–2697 (2011)

    Article  MathSciNet  Google Scholar 

  13. S. Andraros, H. Ahmad, A new efficient memory-less residue to binary converter. IEEE Trans. Circuits Syst. 35, 1441–1444 (1988)

    Article  Google Scholar 

  14. S.J. Piestrak, A high-speed realization of residue to binary system conversion. IEEE Trans. Circuits Syst. II 42, 661–663 (1995)

    Article  Google Scholar 

  15. A. Dhurkadas, Comments on “A High-speed realisation of a residue to binary Number system converter”. IEEE Trans. Circuits Syst. II 45, 446–447 (1998)

    Article  Google Scholar 

  16. T.F. Tay, C.H. Chang, J.Y.S. Low, Efficient VLSI implementation of 2n scaling of signed integers in RNS {2n−1, 2n, 2n+1}. IEEE Trans. Very Large Scale Integr. VLSI Syst. 21, 1936–1940 (2012)

    Google Scholar 

  17. R. Zimmermann, Efficient VLSI implementation of Modulo (2n±1) Addition and multiplication, in Proceedings of IEEE Symposium on Computer Arithmetic, pp. 158–167 (1999)

    Google Scholar 

  18. Z.D. Ulman, M. Czyzak, Highly parallel, fast scaling of numbers in nonredundant residue arithmetic. IEEE Trans. Signal Process. 46, 487–496 (1998)

    Article  MathSciNet  Google Scholar 

  19. M. Lu, J.S. Chiang, A novel division algorithm for the Residue Number System. IEEE Trans. Comput. 41(8), 1026–1032 (1992)

    Article  MathSciNet  Google Scholar 

  20. O. Aichholzer, H. Hassler, Fast method for modulus reduction and scaling in residue number system, in Proceedings of EPP, Vienna, Austria, pp. 41–53 (1993)

    Google Scholar 

  21. C.Y. Hung, B. Parhami, Fast RNS division algorithms for fixed divisors with application to RSA encryption. Inf. Process. Lett. 51, 163–169 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. C.Y. Hung, B. Parhami, An approximate sign detection method for residue numbers and its application to RNS division. Comput. Math. Appl. 27, 23–35 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. A.A. Hiasat, H.S. Abdel-Aty-Zohdy, A high-speed division algorithm for residue number system, in Proceedings of IEEE ISCAS, pp. 1996–1999 (1995)

    Google Scholar 

  24. M.A. Shang, H.U. JianHao, Y.E. YanLong, Z. Lin, L. Xiang, A 2n scaling technique for signed RNS integers and its VLSI implementation. Sci. China Inf. Sci. 53, 203–212 (2010)

    Article  MathSciNet  Google Scholar 

  25. N. Burgess, Scaled and unscaled residue number systems to binary conversion techniques using the core function, in Proceedings of 13th IEEE Symposium on Computer Arithmetic, pp. 250–257 (1997)

    Google Scholar 

  26. N. Burgess, Scaling a RNS number using the core function, in Proceedings of 16th IEEE Symposium on Computer Arithmetic, pp. 262–269 (2003)

    Google Scholar 

  27. B. Vinnakota, V.V.B. Rao, Fast conversion techniques for Binary to RNS. IEEE Trans. Circuits Syst. I 41, 927–929 (1994)

    Article  MATH  Google Scholar 

  28. P.V. Ananda Mohan, Evaluation of fast conversion techniques for Binary-Residue Number Systems. IEEE Trans. Circuits Syst. I 45, 1107–1109 (1998)

    Article  Google Scholar 

  29. S. Bi, W.J. Gross, The Mixed-Radix Chinese Remainder theorem and its applications to residue comparison. IEEE Trans. Comput. 57, 1624–1632 (2008)

    Article  MathSciNet  Google Scholar 

  30. G. Dimauro, S. Impedovo, G. Pirlo, A new technique for fast number comparison in the residue number system. IEEE Trans. Comput. 42, 608–612 (1993)

    Article  MathSciNet  Google Scholar 

  31. S.T. Elvazi, M. Hosseinzadeh, O. Mirmotahari, Fully parallel comparator for the moduli set {2n,2n-1,2n+1}. IEICE Electron. Express 8, 897–901 (2011)

    Article  Google Scholar 

  32. A. Skavantzos, Y. Wang, New efficient RNS-to-weighted decoders for conjugate pair moduli residue number systems, in Proceedings of 33rd Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1345–1350 (1999)

    Google Scholar 

  33. Y. Wang, New Chinese remainder theorems, in Proceedings of 32nd Asilomar Conference on Signals, Systems and Computers, pp. 165–171 (1998)

    Google Scholar 

  34. L. Sousa, Efficient method for comparison in RNS based on two pairs of conjugate moduli, in Proceedings of 18th IEEE Symposium on Computer Arithmetic, pp. 240–250 (2007)

    Google Scholar 

  35. G. Pirlo, D. Impedovo, A new class of monotone functions of the Residue Number System. Int. J. Math. Models Methods Appl. Sci. 7, 802–809 (2013)

    Google Scholar 

  36. Z.D. Ulman, Sign detection and implicit explicit conversion of numbers in residue arithmetic. IEEE Trans. Comput. 32, 5890–5894 (1983)

    MATH  Google Scholar 

  37. T. Tomczak, Fast sign detection for RNS (2n-1, 2n, 2n+1). IEEE Trans. Circuits Syst. I Reg. Pap. 55, 1502–1511 (2008)

    Article  MathSciNet  Google Scholar 

  38. Y. Wang, Residue to binary converters based on New Chinese Remainder theorems. IEEE Trans. Circuits Syst. II 47, 197–205 (2000)

    Article  MATH  Google Scholar 

  39. L. Sousa, P. Martins, Efficient sign detection engines for integers represented in RNS extended 3-moduli set {2n-1, 2n+1, 2n+k}. Electron. Lett. 50, 1138–1139 (2014)

    Article  Google Scholar 

  40. M. Xu, Z. Bian, R. Yao, Fast Sign Detection algorithm for the RNS moduli set {2n+1-1, 2n-1, 2n}. IEEE Trans. VLSI Syst. 23, 379–383 (2014)

    Google Scholar 

  41. D. Bakalis, H.T. Vergos, Shifter circuits for {2n+1, 2n, 2n-1) RNS. Electron. Lett. 45, 27–29 (2009)

    Article  Google Scholar 

Further Reading

  • G. Alia, E. Martinelli, Sign detection in residue Arithmetic units. J. Syst. Archit. 45, 251–258 (1998)

    Article  Google Scholar 

  • D.K. Banerji, J.A. Brzozouski, Sign detection in residue number Systems. IEEE Trans. Comput. C-18, 313–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Garcia, A. Lloris, RNS scaling based on pipelined multipliers for prime moduli, in IEEE Workshop on Signal Processing Systems (SIPS 98), Piscataway, NJ, pp. 459–468 (1998)

    Google Scholar 

  • E. Gholami, R. Farshidi, M. Hosseinzadeh, H. Navi, High speed residue number comparison for the moduli set {2n, 2n-1, 2n+1}. J. Commun. Comput 6, 40–46 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ananda Mohan, P.V. (2016). Scaling, Base Extension, Sign Detection and Comparison in RNS. In: Residue Number Systems. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-41385-3_6

Download citation

Publish with us

Policies and ethics