Skip to main content

Analysis of Velocity Structures in a Transitionally Rough Turbulent Boundary Layer

  • Chapter
  • First Online:
Whither Turbulence and Big Data in the 21st Century?

Abstract

Studies on rough turbulent boundary layers have shown that the surface roughness alters the velocity field near the wall, leading to an increased skin friction. This effect is in particular felt in the roughness sub-layer (3k − 5k, where k denotes the characteristic roughness height) and may extend across the boundary layer for kδ < 50 as mentioned in [9] (note that δ represents the boundary layer thickness). Knowledge of the effects of roughness on turbulent structures is vital for modelling purposes and flow control strategies which can then reduce skin friction drag in turbulent boundary layers by modifying the structures of turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Araya, L. Castillo, C. Meneveau, K. Jansen, A dynamic multi-scale approach for turbulent inflow boundary conditions in spatially developing flows. J. Fluid Mech. 670, 581–605 (2011)

    Article  MATH  Google Scholar 

  2. B. Brzek, R.B. Cal, G. Johansson, L. Castillo, Transitionally rough zero pressure gradient turbulent boundary layers. Exp. Fluids 44 (1), 115–124 (2008)

    Article  MATH  Google Scholar 

  3. J. Cardillo, Y. Chen, G. Araya, J. Newman, K. Jansen, L. Castillo, DNS of a turbulent boundary layer with surface roughness. J. Fluid Mech. 729, 603–637 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Doosttalab, G. Araya, J. Newman, R.J. Adrian, K. Jansen, L. Castillo, Effect of small roughness elements on thermal statistics of a turbulent boundary layer at moderate Reynolds number. J. Fluid Mech. 787, 84–115 (2016)

    Article  MathSciNet  Google Scholar 

  5. O. Flores, J. Jimenez, J.C. Del Alamo, Vorticity organization in the outer layer of turbulent channels with disturbed walls. J. Fluid Mech. 591, 145–154 (2007)

    Article  MATH  Google Scholar 

  6. W.K. George, L. Castillo, Zero-pressure-gradient turbulent boundary layer. Appl. Mech. Rev. 50, 689–729 (1997)

    Article  Google Scholar 

  7. K.E. Jansen, A stabilized finite element method for computing turbulence. Comput. Methods Appl. Mech. Eng. 174 (3–4), 299–317 (1999)

    Article  MATH  Google Scholar 

  8. J. Jeong, F. Hussain, On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Jiménez, Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36 (1), 173–196 (2004). arXiv: http://dx.doi.org/10.1146/annurev.fluid.36.050802.122103

  10. J. Lee, H.J. Sung, P. Krogstad, Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397–431 (2011)

    Article  MATH  Google Scholar 

  11. T.S. Lund, X. Wu, K.D. Squires, Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140 (2), 233–258 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. A.A. Townsend, Equilibrium layers and wall turbulence. J. Fluid Mech. 11, 97–120 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. A.A Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, New York, 1976)

    Google Scholar 

  14. C.H. Whiting, K.E. Jansen, A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluids 35 (1), 93–116 (2001)

    Article  MATH  Google Scholar 

  15. Y. Wu, K.T. Christensen, Spatial structure of a turbulent boundary layer with irregular surface roughness. J. Fluid Mech. 655, 380–418 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the grants from NSF-CBET No. 1512393, NSF No. 21P407 B56589 200 and ONR No. 21C211 B56589 200. Dr. Tutkun’s work is partially financed by the research project DOMT—Developments in Optical Measurement Technologies funded by the Research Council of Norway with project number 231491 under the FRINATEK program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Doosttalab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Doosttalab, A., Dharmarathne, S., Tutkun, M., Adrian, R., Castillo, L. (2017). Analysis of Velocity Structures in a Transitionally Rough Turbulent Boundary Layer. In: Pollard, A., Castillo, L., Danaila, L., Glauser, M. (eds) Whither Turbulence and Big Data in the 21st Century?. Springer, Cham. https://doi.org/10.1007/978-3-319-41217-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41217-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41215-3

  • Online ISBN: 978-3-319-41217-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics