Skip to main content

Solving Parity Games Using an Automata-Based Algorithm

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9705))

Included in the following conference series:

Abstract

Parity games are abstract infinite-round games that take an important role in formal verification. In the basic setting, these games are two-player, turn-based, and played under perfect information on directed graphs, whose nodes are labeled with priorities. The winner of a play is determined according to the parities (even or odd) of the minimal priority occurring infinitely often in that play. The problem of finding a winning strategy in parity games is known to be in UPTime \(\cap \) CoUPTime and deciding whether a polynomial time solution exists is a long-standing open question. In the last two decades, a variety of algorithms have been proposed. Many of them have been also implemented in a platform named PGSolver. This has enabled an empirical evaluation of these algorithms and a better understanding of their relative merits.

In this paper, we further contribute to this subject by implementing, for the first time, an algorithm based on alternating automata. More precisely, we consider an algorithm introduced by Kupferman and Vardi that solves a parity game by solving the emptiness problem of a corresponding alternating parity automaton. Our empirical evaluation demonstrates that this algorithm outperforms other algorithms when the game has a small number of priorities relative to the size of the game. In many concrete applications, we do indeed end up with parity games where the number of priorities is relatively small. This makes the new algorithm quite useful in practice.

Work supported by NSF grants CCF-1319459 and IIS-1527668, NSF Expeditions in Computing project “ExCAPE: Expeditions in Computer Augmented Program Engineering”, BSF grant 9800096, ERC Advanced Investigator Grant 291528 (“Race”) at Oxford and GNCS 2016: Logica, Automi e Giochi per Sistemi Auto-adattivi.

G. Perelli—Part of the work has been done while visiting Rice University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, we mean the set of non-negative integers, excluding zero.

  2. 2.

    The unravellings of and have some analogies with the fixed-point formula introduced in [29] also used to solve parity games. Unlike our work, however, the formula presented there is just a translation of the Zielonka algorithm [31].

References

  1. Aminof, B., Kupferman, O., Murano, A.: Improved model checking of hierarchical systems. Inf. Comput. 210, 68–86 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonik, A., Charlton, N., Huth, M.: Polynomial-time under-approximation of winning regions in parity games. ENTCS 225, 115–139 (2009)

    MATH  Google Scholar 

  3. Berwanger, D.: Admissibility in infinite games. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 188–199. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff and energy games. In: FSTTCS 2010. LIPIcs, vol. 8, pp. 505–516 (2010)

    Google Scholar 

  5. Chatterjee, K., Henzinger, M.: An \(O(n^2)\) time algorithm for alternating Büchi games. In: SODA 2012, pp. 1386–1399 (2012)

    Google Scholar 

  6. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In: LICS 2005, pp. 178–187 (2005)

    Google Scholar 

  7. Chatterjee, K., Jurdzinski, M., Henzinger, T.A.: Quantitative stochastic parity games. In: SODA 2004, pp. 121–130 (2004)

    Google Scholar 

  8. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) LP 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking (2002)

    Google Scholar 

  10. de Alfaro, L., Faella, M.: An accelerated algorithm for 3-color parity games with an application to timed games. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 108–120. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Emerson, E.A., Jutla, C.: Tree automata, \(\mu \)-calculus and determinacy. In: FOCS 1991, pp. 368–377 (1991)

    Google Scholar 

  12. Friedmann, O., Lange, M.: The PGSolver collection of parity game solvers. University of Munich (2009)

    Google Scholar 

  13. Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Heljanko, K., Keinänen, M., Lange, M., Niemelä, I.: Solving parity games by a reduction to SAT. J. Comput. Syst. Sci. 78(2), 430–440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jurdzinski, M.: Deciding the winner in parity games is in UP \(\cap \) co-Up. Inf. Process. Lett. 68(3), 119–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, p. 290. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. SIAM J. Comput. 38(4), 1519–1532 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kozen, D.: Results on the propositional \(\mu \)-calculus. TCS 27(3), 333–354 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kupferman, O., Vardi, M., Wolper, P.: Module checking. Inf. Comput. 164(2), 322–344 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kupferman, O., Vardi, M.Y.: Weak alternating automata and tree automata emptiness. In: STOC, pp. 224–233 (1998)

    Google Scholar 

  21. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata theoretic approach to branching-time model checking. J. ACM 47(2), 312–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mogavero, F., Murano, A., Sorrentino, L.: On promptness in parity games. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 601–618. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time. In: LICS 1988, pp. 422–427 (1988)

    Google Scholar 

  24. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  25. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 369–384. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Thomas, W.: Facets of synthesis: revisiting church’s problem. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 1–14. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  29. Walukiewicz, I.: Pushdown processes: games and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  30. Wilke, T.: Alternating tree automata, parity games, and modal \(\mu \)-calculus. Bull. Belg. Math. Soc. Simon Stevin 8(2), 359 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Perelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Di Stasio, A., Murano, A., Perelli, G., Vardi, M.Y. (2016). Solving Parity Games Using an Automata-Based Algorithm. In: Han, YS., Salomaa, K. (eds) Implementation and Application of Automata. CIAA 2016. Lecture Notes in Computer Science(), vol 9705. Springer, Cham. https://doi.org/10.1007/978-3-319-40946-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40946-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40945-0

  • Online ISBN: 978-3-319-40946-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics