Skip to main content

An Implicit Gradient Meshfree Formulation for Convection-Dominated Problems

  • Chapter
  • First Online:
Advances in Computational Fluid-Structure Interaction and Flow Simulation

Abstract

Meshfree approximations are ideal for the gradient-type stabilized Petrov–Galerkin methods used for solving Eulerian conservation laws due to their ability to achieve arbitrary smoothness, however, the gradient terms are computationally demanding for meshfree methods. To address this issue, a stabilization technique that avoids high order differentiation of meshfree shape functions is introduced by employing implicit gradients under the reproducing kernel approximation framework. The modification to the standard approximation introduces virtually no additional computational cost, and its implementation is simple. The effectiveness of the proposed method is demonstrated in several benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Franca, L.P., Frey, S.L., Hughes, T.J.R.: Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 95, 253–276 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45, 285–312 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hughes, T.J.R.: Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)

    Article  MATH  Google Scholar 

  6. Hughes, T.J.R., Feijóo, G.R., Mazzei, L., Quincy, J.B.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Franca, L.P., Farhat, C.: Bubble functions prompt unusual stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 123, 299–308 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Bristeau, M.O., Franca, L.P., Mallet, M., Rogé, G.: A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96, 117–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baiocchi, C., Brezzi, F., Franca, L.P.: Virtual bubbles and Galerkin-least-squares type methods (Ga. LS). Comput. Methods Appl. Mech. Eng. 105, 125–141 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Günther, F., Liu, W.K., Diachin, D., Christon, M.A.: Multi-scale meshfree parallel computations for viscous, compressible flows. Comput. Methods Appl. Mech. Eng. 190, 279–303 (2000)

    Article  MATH  Google Scholar 

  11. Fries, T.P., Matthies, H.G.: A stabilized and coupled meshfree/meshbased method for the incompressible Navier–Stokes equations—part I: Stabilization. Comput. Methods Appl. Mech. Eng. 195, 6205–6224 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fries, T.P., Matthies, H.G.: A stabilized and coupled meshfree/meshbased method for the incompressible Navier–Stokes equations—Part II: Coupling. Comput. Methods Appl. Mech. Eng. 195, 6191–6204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huerta, A., Fernández‐Méndez, S.: Time accurate consistently stabilized mesh‐free methods for convection dominated problems. Int. J. Numer. Methods Eng. 56, 1225–1242 (2003)

    Article  MATH  Google Scholar 

  14. Chi, S.W., Chen, J.S., Hu, H.Y., Yang, J.P.: A gradient reproducing kernel collocation method for boundary value problems. Int. J. Numer. Methods Eng. 93, 1381–1402 (2013)

    Article  MathSciNet  Google Scholar 

  15. Li, S., Liu, W.K.: Reproducing kernel hierarchical partition of unity. Part I: Formulation and theory. Int. J. Numer. Methods Eng. 45, 251–288 (1999)

    Article  MATH  Google Scholar 

  16. Li, S., Liu, W.K.: Reproducing kernel hierarchical partition of unity. Part II: Applications. Int. J. Numer. Methods Eng. 45, 289–317 (1999)

    Article  Google Scholar 

  17. Chen, J.S., Zhang, X., Belytschko, T.: An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput. Methods Appl. Mech. Eng. 193, 2827–2844 (2004)

    Article  MATH  Google Scholar 

  18. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 20, 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, J.S., Pan, C., Wu, C.T., Liu, W.K.: Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput. Methods Appl. Mech. Eng. 139, 195–227 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dolbow, J., Belytschko, T.: Numerical integration of the Galerkin weak form in meshfree methods. Comput. Mech. 23, 219–230 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Beissel, S., Belytschko, T.: Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, J.S., Wu, C.T., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin mesh-fee methods. Int. J. Numer. Methods Eng. 50, 435–466 (2001)

    Article  MATH  Google Scholar 

  23. Chen, J.S., Hu, W., Puso, M.: Orbital HP-clouds for solving Schrödinger equation in quantum mechanics. Comput. Methods Appl. Mech. Eng. 196, 3693–3705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The support of this work by US Army Engineer Research and Development Center under contract W912HZ-07-C-0019 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hillman, M., Chen, J.S. (2016). An Implicit Gradient Meshfree Formulation for Convection-Dominated Problems. In: Bazilevs, Y., Takizawa, K. (eds) Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40827-9_3

Download citation

Publish with us

Policies and ethics