Skip to main content

Molecular Model of Skeletal Organization and Differentiation

  • Chapter
  • First Online:
Extracellular Composite Matrices in Arthropods

Abstract

The insect cuticle is an extracellular composite matrix deposited and organized by underlying epithelial cells. It protects the animal against dehydration, serves as a barrier against xenobiotics, pathogens and predators, and, as an exoskeleton, allows locomotion. To accommodate its various functions, the different components of the cuticle – the polysaccharide chitin, proteins, lipids and catecholamines – interact with each other forming a tri-dimensional structure. Despite its emergence in the Cambrium, this structure has retained its basic organization in all insect orders tested. Three horizontal layers are distinguished: the outer envelope, the middle epicuticle and the inner procuticle. The histology of the cuticle and the processes of its formation were analysed in detail especially in the kissing bug Rhodnius prolixus and the larger canna leafroller Calpodes ethlius particularly by electron microscopy. Most of the essential molecular players involved in cuticle formation were identified and characterized in the last decade using the fruit fly Drosophila melanogaster and the red flour beetle Tribolium castaneum as model insects employing genetic tools. This chapter aims at merging our histological and molecular knowledge by summarizing the central works on these four exemplar insect species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad-Franch F, Lima MM, Sarquis O, Gurgel-Goncalves R, Sanchez-Martin M, Calzada J, Saldana A, Monteiro FA, Palomeque FS, Santos WS, Angulo VM, Esteban L, Dias FB, Diotaiuti L, Bar ME, Gottdenker NL (2015) On palms, bugs, and chagas disease in the Americas. Acta Trop 151:126–141

    Article  PubMed  Google Scholar 

  • Abrams EW, Andrew DJ (2005) CrebA regulates secretory activity in the Drosophila salivary gland and epidermis. Development 132:2743–2758

    Article  CAS  PubMed  Google Scholar 

  • Anh NT, Nishitani M, Harada S, Yamaguchi M, Kamei K (2011) Essential role of Duox in stabilization of Drosophila wing. J Biol Chem 286:33244–33251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW (2005) The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol 14:453–463

    Article  CAS  PubMed  Google Scholar 

  • Arakane Y, Specht CA, Kramer KJ, Muthukrishnan S, Beeman RW (2008) Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 38:959–962

    Article  CAS  PubMed  Google Scholar 

  • Arakane Y, Dixit R, Begum K, Park Y, Specht CA, Merzendorfer H, Kramer KJ, Muthukrishnan S, Beeman RW (2009) Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochem Mol Biol 39:355–365

    Article  CAS  PubMed  Google Scholar 

  • Arakane Y, Lomakin J, Gehrke SH, Hiromasa Y, Tomich JM, Muthukrishnan S, Beeman RW, Kramer KJ, Kanost MR (2012) Formation of rigid, non-flight forewings (elytra) of a beetle requires two major cuticular proteins. PLoS Genet 8:e1002682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behr M, Hoch M (2005) Identification of the novel evolutionary conserved obstructor multigene family in invertebrates. FEBS Lett 579:6827–6833

    Article  CAS  PubMed  Google Scholar 

  • Bennet-Clark HC (1962) Active control of the mechanical properties of insect endocuticle. J Insect Physiol 8:627–633

    Article  Google Scholar 

  • Chaudhari SS, Moussian B, Specht CA, Arakane Y, Kramer KJ, Beeman RW, Muthukrishnan S (2014) Functional specialization among members of Knickkopf family of proteins in insect cuticle organization. PLoS Genet 10:e1004537

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhari SS, Noh MY, Moussian B, Specht CA, Kramer KJ, Beeman RW, Arakane Y, Muthukrishnan S (2015) Knickkopf and retroactive proteins are required for formation of laminar serosal procuticle during embryonic development of Tribolium castaneum. Insect Biochem Mol Biol 60:1–6

    Article  CAS  PubMed  Google Scholar 

  • Condoulis W, Locke M (1966) Depositon of endocuticle in an insect Calpodes ethlius Stoll (Lepidoptera Hesperiidae). J Insect Physiol 12:311

    Article  CAS  Google Scholar 

  • Cornman RS (2009) Molecular evolution of Drosophila cuticular protein genes. PLoS One 4:e8345

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornman RS, Willis JH (2009) Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. Insect Mol Biol 18:607–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornman RS, Togawa T, Dunn WA, He N, Emmons AC, Willis JH (2008) Annotation and analysis of a large cuticular protein family with the R&R consensus in Anopheles gambiae. BMC Genomics 9:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Dembeck LM, Huang W, Magwire MM, Lawrence F, Lyman RF, Mackay TF (2015) Genetic architecture of abdominal pigmentation in Drosophila melanogaster. PLoS Genet 11:e1005163

    Article  PubMed  PubMed Central  Google Scholar 

  • Dittmer NT, Tetreau G, Cao X, Jiang H, Wang P, Kanost MR (2015) Annotation and expression analysis of cuticular proteins from the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 62:100–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falcon T, Ferreira-Caliman MJ, Franco Nunes FM, Tanaka ED, do Nascimento FS, Gentile Bitondi MM (2014) Exoskeleton formation in Apis mellifera: cuticular hydrocarbons profiles and expression of desaturase and elongase genes during pupal and adult development. Insect Biochem Mol Biol 50:68–81

    Article  CAS  PubMed  Google Scholar 

  • Filshie BK, Hadley NF (1979) Fine structure of the cuticle of the desert scorpion, Hadrurus arizonensis. Tissue Cell 11:249–262

    Article  CAS  PubMed  Google Scholar 

  • Gilbert LI (ed) (2012) Insect molecular biology and biochemistry, 1st edn. Academic Press, London

    Google Scholar 

  • Guan X, Middlebrooks BW, Alexander S, Wasserman SA (2006) Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc Natl Acad Sci U S A 103:16794–16799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havemann J, Muller U, Berger J, Schwarz H, Gerberding M, Moussian B (2008) Cuticle differentiation in the embryo of the amphipod crustacean Parhyale hawaiensis. Cell Tissue Res 332:359–370

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendricks GM, Hadley NF (1983) Structure of the cuticle of the common house cricket with reference to the location of lipids. Tissue Cell 15:761–779

    Article  CAS  PubMed  Google Scholar 

  • Hillman R, Lesnik LH (1970) Cuticle formation in embryo of Drosophila melanogaster. J Morphol 131:383–396

    Article  Google Scholar 

  • Hurd TR, Liang FX, Lehmann R (2015) Curly encodes dual oxidase, which acts with heme peroxidase Curly Su to shape the adult Drosophila wing. PLoS Genet 11:e1005625

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs CG, Braak N, Lamers GE, van der Zee M (2015) Elucidation of the serosal cuticle machinery in the beetle Tribolium by RNA sequencing and functional analysis of knickkopf1, retroactive and laccase2. Insect Biochem Mol Biol 60:7–12

    Article  CAS  PubMed  Google Scholar 

  • Karban R (2014) Transient habitats limit development time for periodical cicadas. Ecology 95:3–8

    Article  PubMed  Google Scholar 

  • Karban R, Black CA, Weinbaum SA (2000) How 17-year cicadas keep track of time. Ecol Lett 3:253–256

    Article  Google Scholar 

  • Kaufman WR, Flynn PC, Reynolds SE (2010) Cuticular plasticization in the tick, Amblyomma hebraeum (Acari: Ixodidae): possible roles of monoamines and cuticular pH. J Exp Biol 213:2820–2831

    Article  CAS  PubMed  Google Scholar 

  • Kawase S (1961) Role of lipid in the hardening of the cuticle in the silkworm, Bombyx mori. Nature 191:279

    Article  CAS  PubMed  Google Scholar 

  • Koganemaru R, Miller DM, Adelman ZN (2013) Robust cuticular penetration resistance in the common bed bug (Cimex lectularius L.) correlates with increased steady-state transcript levels of CPR-type cuticle protein genes. Pestic Biochem Physiol 106:190–197

    Article  CAS  Google Scholar 

  • Liang J, Wang T, Xiang Z, He N (2015) Tweedle cuticular protein BmCPT1 is involved in innate immunity by participating in recognition of Escherichia coli. Insect Biochem Mol Biol 58:76–88

    Article  CAS  PubMed  Google Scholar 

  • Locke M (1961) Pore canals and related structures in insect cuticle. J Biophys Biochem Cytol 10:589–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locke M (1965) The hormonal control of wax secretion in an insect, Calpodes ethlius stoll (Lepidoptera, hesperiidae). J Insect Physiol 11:641–658

    Article  CAS  PubMed  Google Scholar 

  • Locke M (1966) The structure and formation of the cuticulin layer in the epicuticle of an insect, Calpodes ethlius (Lepidoptera, Hesperiidae). J Morphol 118:461–494

    Article  CAS  PubMed  Google Scholar 

  • Locke M (2001) The Wigglesworth lecture: insects for studying fundamental problems in biology. J Insect Physiol 47:495–507

    Article  CAS  PubMed  Google Scholar 

  • Locke M (2003) Surface membranes, Golgi complexes, and vacuolar systems. Annu Rev Entomol 48:1–27

    Article  CAS  PubMed  Google Scholar 

  • Locke M, Huie P (1979) Apolysis and the turnover of plasma membrane plaques during cuticle formation in an insect. Tissue Cell 11:277–291

    Article  CAS  PubMed  Google Scholar 

  • Locke M, Condouli WV, Hurshman LF (1965) Molt and intermolt activities in epidermal cells of an insect. Science 149:437–438

    Article  CAS  PubMed  Google Scholar 

  • Locke M, Kiss A, Sass M (1994) The cuticular localization of integument peptides from particular routing categories. Tissue Cell 26:707–734

    Article  CAS  PubMed  Google Scholar 

  • Luschnig S, Batz T, Armbruster K, Krasnow MA (2006) Serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr Biol 16:186–194

    Article  CAS  PubMed  Google Scholar 

  • Marcu O, Locke M (1999) The origin, transport and cleavage of the molt-associated cuticular protein CECP22 from Calpodes ethlius (Lepidoptera, Hesperiidae). J Insect Physiol 45:861–870

    Article  CAS  PubMed  Google Scholar 

  • Matova N, Mahajan-Miklos S, Mooseker MS, Cooley L (1999) Drosophila quail, a villin-related protein, bundles actin filaments in apoptotic nurse cells. Development 126:5645–5657

    CAS  PubMed  Google Scholar 

  • Mitsui T, Riddiford LM (1976) Pupal cuticle formation by Manduca sexta epidermis in vitro: patterns of ecdysone sensitivity. Dev Biol 54:172–186

    Article  CAS  PubMed  Google Scholar 

  • Moussian B (2013) The arthropod cuticle. In: Minelli A, Boxshall AG, Fusco G (eds) Arthropod biology and evolution – molecules, development, morphology. Springer, Berlin, pp 171–196

    Chapter  Google Scholar 

  • Moussian B, Schwarz H, Bartoszewski S, Nusslein-Volhard C (2005a) Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster. J Morphol 264:117–130

    Article  CAS  PubMed  Google Scholar 

  • Moussian B, Soding J, Schwarz H, Nusslein-Volhard C (2005b) Retroactive, a membrane-anchored extracellular protein related to vertebrate snake neurotoxin-like proteins, is required for cuticle organization in the larva of Drosophila melanogaster. Dev Dyn 233:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Moussian B, Seifarth C, Muller U, Berger J, Schwarz H (2006a) Cuticle differentiation during Drosophila embryogenesis. Arthropod Struct Dev 35:137–152

    Article  CAS  PubMed  Google Scholar 

  • Moussian B, Tang E, Tonning A, Helms S, Schwarz H, Nusslein-Volhard C, Uv AE (2006b) Drosophila Knickkopf and retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development 133:163–171

    Article  CAS  PubMed  Google Scholar 

  • Moussian B, Veerkamp J, Muller U, Schwarz H (2007) Assembly of the Drosophila larval exoskeleton requires controlled secretion and shaping of the apical plasma membrane. Matrix Biol 26:337–347

    Article  CAS  PubMed  Google Scholar 

  • Moussian B, Letizia A, Martinez-Corrales G, Rotstein B, Casali A, Llimargas M (2015) Deciphering the genetic programme triggering timely and spatially-regulated chitin deposition. PLoS Genet 11:e1004939

    Article  PubMed  PubMed Central  Google Scholar 

  • Mun S, Noh MY, Dittmer NT, Muthukrishnan S, Kramer KJ, Kanost MR, Arakane Y (2015) Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt. Sci Rep 5:10484

    Article  PubMed  PubMed Central  Google Scholar 

  • Noh MY, Kramer KJ, Muthukrishnan S, Kanost MR, Beeman RW, Arakane Y (2014) Two major cuticular proteins are required for assembly of horizontal laminae and vertical pore canals in rigid cuticle of Tribolium castaneum. Insect Biochem Mol Biol 53:22–29

    Article  CAS  PubMed  Google Scholar 

  • Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y (2015) Tribolium castaneum RR-1 cuticular protein TcCPR4 is required for formation of pore canals in rigid cuticle. PLoS Genet 11:e1004963

    Article  PubMed  PubMed Central  Google Scholar 

  • Pesch YY, Riedel D, Behr M (2015) Obstructor A organizes matrix assembly at the apical cell surface to promote enzymatic cuticle maturation in Drosophila. J Biol Chem 290:10071–10082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesch YY, Riedel D, Patil KR, Loch G, Behr M (2016) Chitinases and imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci Rep 6:18340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petkau G, Wingen C, Jussen LC, Radtke T, Behr M (2012) Obstructor-A is required for epithelial extracellular matrix dynamics, exoskeleton function, and tubulogenesis. J Biol Chem 287:21396–21405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pryor MGM (1940) On the hardening of the cuticle of insects. Proc B 128:393–407

    CAS  Google Scholar 

  • Qiao L, Xiong G, Wang RX, He SZ, Chen J, Tong XL, Hu H, Li CL, Gai TT, Xin YQ, Liu XF, Chen B, Xiang ZH, Lu C, Dai FY (2014) Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori. Genetics 196:1103–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu X, Sun W, McDonnell CM, Li-Byarlay H, Steele LD, Wu J, Xie J, Muir WM, Pittendrigh BR (2013) Genome-wide analysis of genes associated with moderate and high DDT resistance in Drosophila melanogaster. Pest Manag Sci 69:930–937

    Article  CAS  PubMed  Google Scholar 

  • Reyes A, Sanz M, Duran A, Roncero C (2007) Chitin synthase III requires Chs4p-dependent translocation of Chs3p into the plasma membrane. J Cell Sci 120:1998–2009

    Article  CAS  PubMed  Google Scholar 

  • Reynolds SE (1974a) Pharmacological induction of plasticization in the abdominal cuticle of Rhodnius. J Exp Biol 61:705–718

    CAS  PubMed  Google Scholar 

  • Reynolds SE (1974b) A post-ecdysial plasticization of the abdominal cuticle in Rhodnius. J Insect Physiol 20:1957–1962

    Article  CAS  PubMed  Google Scholar 

  • Reynolds SE (1975) The mechanism of plasticization of the abdominal cuticle in Rhodnius. J Exp Biol 62:81–98

    CAS  PubMed  Google Scholar 

  • Reynolds SE (1985) Hormonal control of cuticle mechanical properties. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 8. Pergamon Press, New York, pp 335–351

    Google Scholar 

  • Riddiford LM (2007) The control of metamorphosis in the kissing bug. J Exp Biol 210:3133–3134

    Article  PubMed  Google Scholar 

  • Sanz M, Trilla JA, Duran A, Roncero C (2002) Control of chitin synthesis through Shc1p, a functional homologue of Chs4p specifically induced during sporulation. Mol Microbiol 43:1183–1195

    Article  CAS  PubMed  Google Scholar 

  • Shaik KS, Pabst M, Schwarz H, Altmann F, Moussian B (2011) The Alg5 ortholog wollknauel is essential for correct epidermal differentiation during Drosophila late embryogenesis. Glycobiology 21:743–756

    Article  CAS  PubMed  Google Scholar 

  • Shaik KS, Meyer F, Vazquez AV, Flotenmeyer M, Cerdan ME, Moussian B (2012) Delta-aminolevulinate synthase is required for apical transcellular barrier formation in the skin of the Drosophila larva. Eur J Cell Biol 91:204–215

    Article  CAS  PubMed  Google Scholar 

  • Shaik KS, Wang Y, Aravind L, Moussian B (2014) The Knickkopf DOMON domain is essential for cuticle differentiation in Drosophila melanogaster. Arch Insect Biochem Physiol 86:100–106

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Mishra M, Ram KR, Kumar R, Abdin MZ, Chowdhuri DK (2011) Transcriptome analysis provides insights for understanding the adverse effects of endosulfan in Drosophila melanogaster. Chemosphere 82:370–376

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Ariki S, Shinzawa N, Miyaji R, Suyama H, Sako M, Inomata N, Koshiba T, Kanuka H, Kawabata S (2010) Protein crosslinking by transglutaminase controls cuticle morphogenesis in Drosophila. PLoS One 5:e13477

    Article  PubMed  PubMed Central  Google Scholar 

  • Soares MP, Silva-Torres FA, Elias-Neto M, Nunes FM, Simoes ZL, Bitondi MM (2011) Ecdysteroid-dependent expression of the tweedle and peroxidase genes during adult cuticle formation in the honey bee, Apis mellifera. PLoS One 6:e20513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza-Ferreira PS, Mansur JF, Berni M, Moreira MF, dos Santos RE, Araujo HM, de Souza W, Ramos IB, Masuda H (2014a) Chitin deposition on the embryonic cuticle of Rhodnius prolixus: the reduction of CHS transcripts by CHS-dsRNA injection in females affects chitin deposition and eclosion of the first instar nymph. Insect Biochem Mol Biol 51:101–109

    Article  CAS  PubMed  Google Scholar 

  • Souza-Ferreira PS, Moreira MF, Atella GC, Oliveira-Carvalho AL, Eizemberg R, Majerowicz D, Melo AC, Zingali RB, Masuda H (2014b) Molecular characterization of Rhodnius prolixus’ embryonic cuticle. Insect Biochem Mol Biol 51:89–100

    Article  CAS  PubMed  Google Scholar 

  • Tetreau G, Cao X, Chen YR, Muthukrishnan S, Jiang H, Blissard GW, Kanost MR, Wang P (2015a) Overview of chitin metabolism enzymes in Manduca sexta: Identification, domain organization, phylogenetic analysis and gene expression. Insect Biochem Mol Biol 62:114–126

    Article  CAS  PubMed  Google Scholar 

  • Tetreau G, Dittmer NT, Cao X, Agrawal S, Chen YR, Muthukrishnan S, Haobo J, Blissard GW, Kanost MR, Wang P (2015b) Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. Insect Biochem Mol Biol 62:127–141

    Article  CAS  PubMed  Google Scholar 

  • Tiklova K, Tsarouhas V, Samakovlis C (2013) Control of airway tube diameter and integrity by secreted chitin-binding proteins in Drosophila. PLoS One 8:e67415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Xia Q, He X, Dai M, Ruan J, Chen J, Yu G, Yuan H, Hu Y, Li R, Feng T, Ye C, Lu C, Wang J, Li S, Wong GK, Yang H, Wang J, Xiang Z, Zhou Z, Yu J (2005) SilkDB: a knowledgebase for silkworm biology and genomics. Nucleic Acids Res 33:D399–D402

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Odemer R, Rosenkranz P, Moussian B (2014) Putative orthologues of genetically identified Drosophila melanogaster chitin producing and organising genes in Apis mellifera. Apidologie 45:733–747

    Article  CAS  Google Scholar 

  • Wigglesworth VB (1970) Structural lipids in the insect cuticle and the function of the oenocytes. Tissue Cell 2:155–179

    Article  CAS  PubMed  Google Scholar 

  • Wigglesworth VB (1985a) The transfer of lipid in insects from the epidermal cells to the cuticle. Tissue Cell 17:249–265

    Article  CAS  PubMed  Google Scholar 

  • Wigglesworth VB (1985b) Sclerotin and lipid in the waterproofing of the insect cuticle. Tissue Cell 17:227–248

    Article  CAS  PubMed  Google Scholar 

  • Wigglesworth VB (1988) The source of lipids and polyphenols for the insect cuticle: the role of fat body, oenocytes and oenocytoids. Tissue Cell 20:919–932

    Article  CAS  PubMed  Google Scholar 

  • Wolfgang WJ, Riddiford LM (1981) Cuticular morphogenesis during continuous growth of the final instar larva of a moth. Tissue Cell 13:757–772

    Article  CAS  PubMed  Google Scholar 

  • Wright TR (1987) The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv Genet 24:127–222

    CAS  PubMed  Google Scholar 

  • Yamashiro S, Yamakita Y, Ono S, Matsumura F (1998) Fascin, an actin-bundling protein, induces membrane protrusions and increases cell motility of epithelial cells. Mol Biol Cell 9:993–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu X, Zhang J, Li D, Sun Y, Guo Y, Ma E, Zhu KY (2010) Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem Mol Biol 40:824–833

    Article  CAS  PubMed  Google Scholar 

  • Zhong YS, Mita K, Shimada T, Kawasaki H (2006) Glycine-rich protein genes, which encode a major component of the cuticle, have different developmental profiles from other cuticle protein genes in Bombyx mori. Insect Biochem Mol Biol 36:99–110

    Article  CAS  PubMed  Google Scholar 

  • Ziese S, Dorn A (2003) Embryonic integument and “molts” in Manduca sexta (Insecta, Lepidoptera). J Morphol 255:146–161

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Moussian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moussian, B. (2016). Molecular Model of Skeletal Organization and Differentiation. In: Cohen, E., Moussian, B. (eds) Extracellular Composite Matrices in Arthropods. Springer, Cham. https://doi.org/10.1007/978-3-319-40740-1_3

Download citation

Publish with us

Policies and ethics