Skip to main content

Bacteriophage Ecology

  • Living reference work entry
  • First Online:
Bacteriophages

Abstract

Ecology is the study of the interactions of organisms with their environments. Environments consist of biotic components (e.g., cellular organisms such as bacterial hosts) and abiotic components (e.g., temperature, pH, or ultraviolet radiation). Bacteriophage ecology thus is the study of the interactions of bacteriophages (phages) with biotic as well as abiotic aspects of their environments. The fundamental focus of ecology tends to be on populations, that is, genetically coherent groupings of organisms (species). Often this also involves considerations of the ecology of communities (interactions among multiple species in the same area) as well as the ecology of ecosystems (which include, conceptually, both communities and abiotic aspects of environments). Also within the purview of ecology are evolutionarily relevant interactions between organisms such as antagonistic coevolution, which here would be “arms races” between phages and bacteria. Ecology can be studied either observationally or empirically. Metagenomics, the study of the collective genetic material acquired from environmental samples, currently is the most prominent means of observational study in environmental microbiology, the latter an aspect of microbial ecology and thus (especially as viromics) of phage ecology as well. Empirical studies, by contrast, commonly use “models” to explore ecology, including ones exploring phage ecology. These models range from broth culture-based experiments in the laboratory to experimental microcosms located in situ, the latter such as in a pond but still separated from the pond. Particularly as theoretical studies, models also can be mathematical or computer-based. All of these approaches can be combined toward comprehending how individual organisms, groups of organisms, ecosystems, or even groups of ecosystems function in nature. In this chapter, we consider the ecology of phages as well as the ecological aspects of their evolutionary biology. As what is addressed can be considered to be the bulk of phage biology as found outside of well-controlled laboratory systems, the chapter covers substantial ground. As complementary material in this volume, we point the reader to the biology of phage productive infections, lysogeny, bacterial resistance to phages, and, as a form of applied phage ecology, phage therapy pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abedon ST (1990) Selection for lysis inhibition in bacteriophage. J Theor Biol 146:501–511

    Article  CAS  PubMed  Google Scholar 

  • Abedon ST (2006) Phage ecology. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 37–46

    Google Scholar 

  • Abedon ST (2008) Ecology of viruses infecting bacteria. In: Mahy BWJ, Van Regenmortel MHV (eds) Encyclopedia of virology, 3rd edn. Elsevier, Oxford, pp 71–77

    Chapter  Google Scholar 

  • Abedon ST (2009a) Kinetics of phage-mediated biocontrol of bacteria. Foodborne Pathog Dis 6:807–815

    Article  PubMed  Google Scholar 

  • Abedon ST (2009b) Phage evolution and ecology. Adv Appl Microbiol 67:1–45

    Article  CAS  PubMed  Google Scholar 

  • Abedon ST (2011) Bacteriophages and biofilms: ecology, phage therapy, plaques. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Abedon ST (2012a) Spatial vulnerability: bacterial arrangements, microcolonies, and biofilms as responses to low rather than high phage densities. Viruses 4:663–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2012b) Thinking about microcolonies as phage targets. Bacteriophage 2:200–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2015) Ecology of anti-biofilm agents II. Bacteriophage exploitation and biocontrol of biofilm bacteria. Pharmaceuticals (Basel) 8:559–589

    Article  CAS  Google Scholar 

  • Abedon ST (2016) Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets? FEMS Microbiol Lett 363:fnv246

    Article  PubMed  CAS  Google Scholar 

  • Abedon ST (2017a) Commentary: communication between viruses guides lysis-lysogeny decisions. Front Microbiol 8:983

    Article  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2017b) Phage "delay" towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages. AIMS Microbiol 3:186–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2018) Phage therapy: various perspectives on how to improve the art. Meth Mol Biol 1734:113–127

    Google Scholar 

  • Abedon ST (2019) Look who's talking: T-even phage lysis inhibition, the granddaddy of virus-virus intercellular communication research. Viruses 11(10):E951

    Article  PubMed  CAS  Google Scholar 

  • Abedon ST (2020a) Phage therapy: killing titers, multiplicity of infection, adsorption theory, and passive versus active treatments. In: Kurtboke DI, Aminov R (eds) Advances on the applications of bacteriophages. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Abedon ST (2020b) Phage-phage, phage-bacteria, and phage-environment communication. In: Witzany G (ed) Biocommunication of phages. Springer, New York

    Google Scholar 

  • Abedon S.T. (2020c) Bacteriophage-mediated biocontrol of wound infections, and ecological exploitation of biofilms by phages. In: Shiffman M, Low M. (eds) Biofilm, Pilonidal Cysts and Sinuses. Recent Clinical Techniques, Results, and Research in Wounds, vol 1. Springer, Cham, pp 121–158

    Google Scholar 

  • Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47

    Article  CAS  PubMed  Google Scholar 

  • Abedon ST, Herschler TD, Stopar D (2001) Bacteriophage latent-period evolution as a response to resource availability. Appl Environ Microbiol 67:4233–4241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abedon ST, Hyman P, Thomas C (2003) Experimental examination of bacteriophage latent-period evolution as a response to bacterial availability. Appl Environ Microbiol 69:7499–7506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhter S, Aziz RK, Edwards RA (2012) PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucl Acids Res 40:e126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Angly F, Rodriguez-Brito B, Bangor D, McNairnie P, Breitbart M, Salamon P, Felts B, Nulton J, Mahaffy J, Rohwer F (2005) PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information. BMC Bioinfor 6:41

    Article  CAS  Google Scholar 

  • Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F (2006) The marine viromes of four oceanic regions. PLoS Biol 4:e368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Angly FE, Willner D, Prieto-Davo A, Edwards RA, Schmieder R, Vega-Thurber R, Antonopoulos DA, Barott K, Cottrell MT, Desnues C, Dinsdale EA, Furlan M, Haynes M, Henn MR, Hu Y, Kirchman DL, McDole T, McPherson JD, Meyer F, Miller RM, Mundt E, Naviaux RK, Rodriguez-Mueller B, Stevens R, Wegley L, Zhang L, Zhu B, Rohwer F (2009) The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes. PLoS Comput Biol 5:e1000593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aviram I, Rabinovitch A (2008) Dynamical types of bacteria and bacteriophages interaction: shielding by debris. J Theor Biol 251:121–136

    Article  CAS  PubMed  Google Scholar 

  • Azam AH, Tanji Y (2019) Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol 103:2121–2131

    Article  CAS  PubMed  Google Scholar 

  • Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266

    Article  CAS  PubMed  Google Scholar 

  • Barr JJ (2017) A bacteriophages journey through the human body. Immunol Rev 279:106–122

    Article  CAS  PubMed  Google Scholar 

  • Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, Stotland A, Wolkowicz R, Cutting AS, Doran KS, Salamon P, Youle M, Rohwer F (2013) Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 110:10771–10776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergh O, Børsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature (London) 340:467–468

    Article  CAS  Google Scholar 

  • Bettarel Y, Sime-Ngando T, Amblard C, Laveran H (2000) A comparison of methods for counting viruses in aquatic systems. Appl Environ Microbiol 66:2283–2289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleichrodt JF, van Abkoude ER (1967) The transition between two forms of bacteriophage phi-X174 differing in heat sensitivity and adsorption characteristics. Virology 32:93–102

    Article  CAS  PubMed  Google Scholar 

  • Bohannan BJM, Lenski RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3:362–377

    Article  Google Scholar 

  • Boots M, Mealor M (2007) Local interactions select for lower pathogen infectivity. Science (New York, N Y ) 315:1284–1286

    Article  CAS  Google Scholar 

  • Bradley DE, Sirgel FA, Coetzee JN, Hedges RW, Coetzee WF (1982) Phages C-2 and J: IncC and IncJ plasmid-dependent phages, respectively. J Gen Microbiol 128 (Pt 10):2485–2498

    Google Scholar 

  • Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284

    Article  CAS  PubMed  Google Scholar 

  • Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A 99:14250–14255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitbart M, Felts B, Kelley S, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2004a) Diversity and population structure of a near-shore marine sediment viral community. Proc R Soc Lond B Biol Sci 271:565–574

    Article  Google Scholar 

  • Breitbart M, Miyake JH, Rohwer F (2004b) Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol Lett 236:249–256

    Article  CAS  PubMed  Google Scholar 

  • Bull JJ (2006) Optimality models of phage life history and parallels in disease evolution. J Theor Biol 241:928–938

    Article  CAS  PubMed  Google Scholar 

  • Bull JJ, Christensen KA, Scott C, Jack BR, Crandall CJ, Krone SM (2018) Phage-bacterial dynamics with spatial structure: self organization around phage sinks can promote increased cell densities. Antibiotics (Basel) 7(1):8

    Article  CAS  Google Scholar 

  • Cairns J, Stent G, Watson JD (1966) Phage and the origins of molecular biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Campbell A (1961) Conditions for the existence of bacteriophages. Evolution; Int J Organic Evolut 15:153–165

    Article  Google Scholar 

  • Carlson K, Raleigh EA, Hattman S (1994) Restriction and modification. In: Karam JD, Kutter E, Carlson K, Guttman B (eds) Molecular biology of bacteriophage T4. ASM Press, Washington, D.C., pp 369–370

    Google Scholar 

  • Casas V, Rohwer F (2007) Phage metagenomics. Meth Enzymol 421:259–268

    Article  CAS  Google Scholar 

  • Ceyssens PJ, Miroshnikov K, Mattheus W, Krylov V, Robben J, Noben JP, Vanderschraeghe S, Sykilinda N, Kropinski AM, Volckaert G, Mesyanzhinov V, Lavigne R (2009) Comparative analysis of the widespread and conserved PB1-like viruses infecting Pseudomonas aeruginosa. Environ Microbiol 11:2874–2883

    Google Scholar 

  • Chan BK, Abedon ST (2012) Bacteriophage adaptation, with particular attention to issues of phage host range. In: Quiberoni A, Reinheimer J (eds) Bacteriophages in dairy processing. Nova Science Publishers, Hauppauge, pp 25–52

    Google Scholar 

  • Chan BK, Abedon ST (2015) Bacteriophages and their enzymes in biofilm control. Curr Pharm Des 21:85–99

    Article  CAS  PubMed  Google Scholar 

  • Chao L, Levin BR, Stewart FM (1977) A complex community in a simple habitat: an experimental study with bacteria and phage. Ecology 58:369–378

    Article  Google Scholar 

  • Chatterjee A, Duerkop BA (2018) Beyond bacteria: bacteriophage-eukaryotic host interactions reveal emerging paradigms of health and disease. Front Microbiol 9:1394

    Article  PubMed  PubMed Central  Google Scholar 

  • Chow CE, Suttle CA (2015) Biogeography of viruses in the sea. Annu Rev Virol 2:41–66

    Article  CAS  PubMed  Google Scholar 

  • Cobian Guemes AG, Youle M, Cantu VA, Felts B, Nulton J, Rohwer F (2016) Viruses as winners in the game of life. Annu Rev Virol 3:197–214

    Article  CAS  PubMed  Google Scholar 

  • Comeau AM, Chan AM, Suttle CA (2006) Genetic richness of vibriophages isolated in a coastal environment. Environ Microbiol 8:1164–1176

    Article  CAS  PubMed  Google Scholar 

  • Conley MP, Wood WB (1975) Bacteriophage T4 whiskers: a rudimentary environment-sensing device. Proc Natl Acad Sci U S A 72:3701–3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabrowska K, Abedon ST (2019) Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol Mol Biol Rev 83:e00012–e00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danovaro R, Dell'Anno A, Trucco A, Serresi M, Vanucci S (2001) Determination of virus abundance in marine sediments. Appl Environ Microbiol 67:1384–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Paepe M, Taddei F (2006) Viruses' life history: towards a mechanistic basis of a trade-off between survival and reproduction among phages. PLoS Biol 4:e193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dennehy JJ, Friedenberg NA, Yang YW, Turner PE (2007) Virus population extinction via ecological traps. Ecol Lett 10:230–240

    Article  PubMed  Google Scholar 

  • d'Hérelle F, Smith GH (1926) The bacteriophage and its behavior. Williams & Wilkins Co, Baltimore

    Google Scholar 

  • Diaz-Munoz SL, Koskella B (2014) Bacteria-phage interactions in natural environments. Adv Appl Microbiol 89:135–183

    Article  PubMed  Google Scholar 

  • Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R (2018) Systematic discovery of antiphage defense systems in the microbial pangenome. Science (New York, N Y ) 359(6379):eaar4120

    Article  CAS  Google Scholar 

  • Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GG, Boling L, Barr JJ, Speth DR, Seguritan V, Aziz RK, Felts B, Dinsdale EA, Mokili JL, Edwards RA (2014) A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun 5:4498

    Article  CAS  PubMed  Google Scholar 

  • Dy RL, Richter C, Salmond GP, Fineran PC (2014) Remarkable mechanisms in microbes to resist phage infections. Annu Rev Virol 1:307–331

    Article  PubMed  CAS  Google Scholar 

  • Edlund A, Santiago-Rodriguez TM, Boehm TK, Pride DT (2015) Bacteriophage and their potential roles in the human oral cavity. J Oral Microbiol 7:27423

    Article  PubMed  CAS  Google Scholar 

  • Edwards RA, McNair K, Faust K, Raes J, Dutilh BE (2016) Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev 40:258–272

    Article  CAS  PubMed  Google Scholar 

  • Eggleston EM, Hewson I (2016) Abundance of two Pelagibacter ubique bacteriophage genotypes along a latitudinal transect in the North and South Atlantic Oceans. Front Microbiol 7:1534

    Google Scholar 

  • Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, Amitai G, Sorek R (2017) Communication between viruses guides lysis-lysogeny decisions. Nature (London) 541:488–493

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575

    Article  CAS  PubMed  Google Scholar 

  • Ford BE, Sun B, Carpino J, Chapler ES, Ching J, Choi Y, Jhun K, Kim JD, Lallos GG, Morgenstern R, Singh S, Theja S, Dennehy JJ (2014) Frequency and fitness consequences of bacteriophage Φ6 host range mutations. PLoS One 9:e113078

    Google Scholar 

  • Forde SE, Thompson JN, Bohannan BJM (2004) Adaptation varies through space and time in a coevolving host–parasitoid interaction. Nature (London) 431:841–844

    Article  CAS  Google Scholar 

  • Forterre P, Soler N, Krupovic M, Marguet E, Ackermann H-W (2013) Fake virus particles generated by fluorescence microscopy. Trends Microbiol 21:1–5

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature (London) 399:541–548

    Article  CAS  Google Scholar 

  • Gallet R, Shao Y, Wang I-N (2009) High adsorption rate is detrimental to bacteriophage fitness in a biofilm-like environment. BMC Evol Biol 9:241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldhill DH, Turner PE (2014) The evolution of life history trade-offs in viruses. Curr Opin Virol 8C:79–84

    Article  Google Scholar 

  • Gonzalez MD, Lichtensteiger CA, Caughlan R, Vimr ER (2002) Conserved filamentous prophage in Escherichia coli O18:K1:H7 and Yersinia pestis biovar orientalis. J Bacteriol 184:6050–6055

    Google Scholar 

  • Goyal SM, Gerba CP, Bitton G (1987) Phage ecology. CRC Press, Boca Raton

    Google Scholar 

  • Gregory AC, Zayed AA, Conceicao-Neto N, Temperton B, Bolduc B, Alberti A, Ardyna M, Arkhipova K, Carmichael M, Cruaud C, Dimier C, Dominguez-Huerta G, Ferland J, Kandels S, Liu Y, Marec C, Pesant S, Picheral M, Pisarev S, Poulain J, Tremblay JE, Vik D, Babin M, Bowler C, Culley AI, de VC, Dutilh BE, Iudicone D, Karp-Boss L, Roux S, Sunagawa S, Wincker P, Sullivan MB (2019) Marine DNA viral macro- and microdiversity from pole to pole. Cell 177:1109–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greninger AL (2018) A decade of RNA virus metagenomics is (not) enough. Virus Res 244:218–229

    Article  CAS  PubMed  Google Scholar 

  • Hadas H, Einav M, Fishov I, Zaritsky A (1997) Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143:179–185

    Google Scholar 

  • Hall AR, Scanlan PD, Morgan AD, Buckling A (2011) Host-parasite coevolutionary arms races give way to fluctuating selection. Ecol Lett 14:635–642

    Article  PubMed  Google Scholar 

  • Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, SanMiguel AJ, Minot S, Bushman FD, Grice EA (2015) The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. MBio 6(5):e01578–e01515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson CA, Marston MF, Martiny JB (2016) Biogeographic variation in host range phenotypes and taxonomic composition of marine cyanophage isolates. Front Microbiol 7:983

    Article  PubMed  PubMed Central  Google Scholar 

  • Harper DR, Parracho HMR, Walker J, Sharp R, Hughes G, Werthrén M, Lehman S, Morales S (2014) Bacteriophages and biofilms. Antibiotics 3:270–284

    Article  CAS  PubMed Central  Google Scholar 

  • Hayes S, Mahony J, Nauta A, van SD (2017) Metagenomic approaches to assess bacteriophages in various environmental niches. Viruses 9(6):E127

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi K, Adelberg EA (1965) Growth of male-specific bacteriophage in Proteus mirabilis harboring F-genotes derived from Escherichia coli. J Bacteriol 89:1231–1236

    Google Scholar 

  • Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB (2017) Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 11:1511–1520

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, Wilhelm SW, Jiao N, Chen F (2010) Ubiquitous cyanobacterial podoviruses in the global oceans unveiled through viral DNA polymerase gene sequences. ISME J 4:1243–1251

    Article  PubMed  Google Scholar 

  • Huang S, Zhang S, Jiao N, Chen F (2015) Marine cyanophages demonstrate biogeographic patterns throughout the global ocean. Appl Environ Microbiol 81:441–452

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz BL, Sullivan MB (2013) The Pacific Ocean virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One 8:e57355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurwitz BL, U'Ren JM, Youens-Clark K (2016) Computational prospecting the great viral unknown. FEMS Microbiol Lett 363:fnw077

    Article  PubMed  CAS  Google Scholar 

  • Hyman P (2019) Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals (Basel) 12(1):35

    Article  CAS  Google Scholar 

  • Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248

    Article  CAS  PubMed  Google Scholar 

  • Jacquet S, Zhong X, Peduzzi P, Thingstad TF, Parikka KJ, Weinbauer MG (2018) Virus interactions in the aquatic world. In: Hyman P, Abedon ST (eds) Viruses of microorganisms. Caister Academic Press, Norwich, pp 115–141

    Google Scholar 

  • Kalatzis PG, Rorbo NI, Castillo D, Mauritzen JJ, Jorgensen J, Kokkari C, Zhang F, Katharios P, Middelboe M (2017) Stumbling across the same phage: comparative genomics of widespread temperate phages infecting the fish pathogen Vibrio anguillarum. Viruses 9

    Google Scholar 

  • Kang I, Oh HM, Kang D, Cho JC (2013) Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans. Proc Natl Acad Sci U S A 110:12343–12348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M-S, Bae J-W (2018) Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J 12:1127–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koskella B, Lin DM, Buckling A, Thompson JN (2012) The costs of evolving resistance in heterogeneous parasite environments. Proc Biol Sci 279:1896–1903

    PubMed  Google Scholar 

  • Kutter E, Kellenberger E, Carlson K, Eddy S, Neitzel J, Messinger L, North J, Guttman B (1994) Effects of bacterial growth conditions and physiology on T4 infection. In: Karam JD, Kutter E, Carlson K, Guttman B (eds) The molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 406–418

    Google Scholar 

  • Kuzyakov Y, Mason-Jones K (2018) Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol Biochem 127:305–317

    Article  CAS  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    Article  CAS  PubMed  Google Scholar 

  • Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z (2017) Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol 101:3103–3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin BR (1988) Frequency-dependent selection in bacterial populations. Philos Trans R Soc Lond Ser B Biol Sci 319:459–472

    CAS  Google Scholar 

  • Levin BR, Stewart FM, Chao L (1977) Resource limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Am Nat 111:3–24

    Article  Google Scholar 

  • Lima-Mendez G, Van Helden J, Toussaint A, Leplae R (2008) Prophinder: a computational tool for prophage prediction in prokaryotic genomes. Bioinformatics (Oxford, England) 24:863–865

    Article  CAS  Google Scholar 

  • Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L (2018) Phylogenetically novel uncultured microbial cells dominate Earth microbiomes. mSystems 3:e00055–e00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loftus A, Delisle AL (1995) Inducible bacteriophages of Actinobacillus actinomycetemcomitans. Curr Microbiol 30:317–321

    Google Scholar 

  • Los JM, Los M, Wegrzyn A, Wegrzyn G (2008) Role of the bacteriophage lambda exo-xis region in the virus development. Folia Microbiol 53:443–450

    Article  CAS  Google Scholar 

  • Mahmoud H, Jose L (2017) Phage and nucleocytoplasmic large viral sequences dominate coral viromes from the Arabian Gulf. Front Microbiol 8:2063

    Article  PubMed  PubMed Central  Google Scholar 

  • Manrique P, Bolduc B, Walk ST, van der Oost J, de Vos WM, Young MJ (2016) Healthy human gut phageome. Proc Natl Acad Sci U S A 113:10400–10405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marhaver KL, Edwards RA, Rohwer F (2008) Viral communities associated with healthy and bleaching corals. Environ Microbiol 10:2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marie D, Brussaard CPD, Thyrhaug G, Bratbak G, Vaulot D (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol 65:45–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marston MF, Taylor S, Sme N, Parsons RJ, Noyes TJ, Martiny JB (2013) Marine cyanophages exhibit local and regional biogeography. Environ Microbiol 15:1452–1463

    Article  CAS  PubMed  Google Scholar 

  • Maxwell KL (2016) Phages fight back: inactivation of the CRISPR-Cas bacterial immune system by anti-CRISPR proteins. PLoS Pathog 12:e1005282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller-Ensminger T, Garretto A, Brenner J, Thomas-White K, Zambom A, Wolfe AJ, Putonti C (2018) Bacteriophages of the urinary microbiome. J Bacteriol 200:e00738–e00717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, Lewis JD, Bushman FD (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21:1616–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokili JL, Rohwer F, Dutilh BE (2012) Metagenomics and future perspectives in virus discovery. Curr Opin Virol 2:63–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnar DM, Lawton WD (1971) Growth of male-specific bacteriophage in Pasteurella harboring F-genotes derived from Escherichia coli. J Virol 7:24–28

    Google Scholar 

  • Morella NM, Gomez AL, Wang G, Leung MS, Koskella B (2018) The impact of bacteriophages on phyllosphere bacterial abundance and composition. Mol Ecol 27:2025–2038

    Article  PubMed  Google Scholar 

  • Mushegian AR (2020) Are there 1031 virus particles on Earth, or more, or less? J Bacteriol 202:e00052–e00020

    Google Scholar 

  • Nadell CD, Drescher K, Foster KR (2016) Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol 14:589–600

    Article  CAS  PubMed  Google Scholar 

  • Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM (2012) Endolysins as antimicrobials. Adv Virus Res 83:299–365

    Article  CAS  PubMed  Google Scholar 

  • Oliveira H, Sao-Jose C, Azeredo J (2018) Phage-derived peptidoglycan degrading enzymes: challenges and future prospects for in vivo therapy. Viruses 10

    Google Scholar 

  • Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, Rubin E, Ivanova NN, Kyrpides NC (2016) Uncovering Earth's virome. Nature (London) 536:425–430

    Article  CAS  Google Scholar 

  • Parikka KJ, Le RM, Wauters N, Jacquet S (2017) Deciphering the virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a variety of ecosystems. Biol Rev Camb Philos Soc 92:1081–1100

    Article  PubMed  Google Scholar 

  • Pawluk A, Davidson AR, Maxwell KL (2018) Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol 16:12–17

    Article  CAS  PubMed  Google Scholar 

  • Peankuch E, Kausche GA (1940) Isolierung und, übermikroskopische Abbildung eines Bakteriophagen. Naturwissenschaften 28:46

    Article  Google Scholar 

  • Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J (2016) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 100:2141–2151

    Article  CAS  PubMed  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora 1. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Poullain V, Gandon S, Brockhurst MA, Buckling A, Hochberg ME (2008) The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage. Evolution; Int J Organic Evolut 62:1–11

    Google Scholar 

  • Proctor LM (1997) Advances in the study of marine viruses. Microsc Res Tech 37:136–161

    Article  CAS  PubMed  Google Scholar 

  • Rabinovitch A, Aviram I, Zaritsky A (2003) Bacterial debris—an ecological mechanism for coexistence of bacteria and their viruses. J Theor Biol 224:377–383

    Article  PubMed  Google Scholar 

  • Reche I, D'Orta G, Mladenov N, Winget DM, Suttle CA (2018) Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J 12:1154–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, Gordon JI (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature (London) 466:334–338

    Article  CAS  Google Scholar 

  • Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pasic L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4:739–751

    Article  PubMed  Google Scholar 

  • Rosario K, Fierer N, Miller S, Luongo J, Breitbart M (2018) Diversity of DNA and RNA viruses in indoor air as assessed via metagenomic sequencing. Environ Sci Technol 52:1014–1027

    Article  CAS  PubMed  Google Scholar 

  • Ross A, Ward S, Hyman P (2016) More is better: selecting for broad host range bacteriophages. Front Microbiol 7:1352

    Article  PubMed  PubMed Central  Google Scholar 

  • Roux S, Enault F, Hurwitz BL, Sullivan MB (2015) VirSorter: mining viral signal from microbial genomic data. PeerJ 3:e985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roux S, Solonenko NE, Dang VT, Poulos BT, Schwenck SM, Goldsmith DB, Coleman ML, Breitbart M, Sullivan MB (2016) Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ 4:e2777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roychoudhury P, Shrestha N, Wiss VR, Krone SM (2014) Fitness benefits of low infectivity in a spatially structured population of bacteriophages. Proc Biol Sci 281:20132563

    PubMed  PubMed Central  Google Scholar 

  • Ruska H (1940) Die Sichtbarmachung der bakteriophagen Lyse im Übermikroskop. Naturwissenschaften 28:45–46

    Article  CAS  Google Scholar 

  • Schijven JF, Hassanizadeh SM (2000) Removal of viruses by soil passage: overview of modeling, processes, and parameters. Crit Rev Environ Sci Technol 30:49–127

    Article  CAS  Google Scholar 

  • Shao Y, Wang I-N (2008) Bacteriophage adsorption rate and optimal lysis time. Genetics 180:471–482

    Article  PubMed  PubMed Central  Google Scholar 

  • Short SM, Suttle CA (2002) Sequence analysis of marine virus communities reveals groups of related algal viruses are widely distributed in nature. Appl Environ Microbiol 68:1290–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39:321–346

    Article  CAS  Google Scholar 

  • Stent GS (1963) Molecular biology of bacterial viruses. WH Freeman and Co, San Francisco

    Google Scholar 

  • Stewart FM, Levin BR (1984) The population biology of bacterial viruses: why be temperate. Theor Pop Biol 26:93–117

    Article  CAS  Google Scholar 

  • Sutherland IW, Hughes KA, Skillman LC, Tait K (2004) The interaction of phage and biofilms. FEMS Microbiol Lett 232:1–6

    Article  CAS  PubMed  Google Scholar 

  • Szekely AJ, Breitbart M (2016) Single-stranded DNA phages: from early molecular biology tools to recent revolutions in environmental microbiology. FEMS Microbiol Lett 363

    Google Scholar 

  • Tariq MA, Everest FL, Cowley LA, de SA, Holt GS, Bridge SH, Perry A, Perry JD, Bourke SJ, Cummings SP, Lanyon CV, Barr JJ, Smith DL (2015) A metagenomic approach to characterize temperate bacteriophage populations from cystic fibrosis and non-cystic fibrosis bronchiectasis patients. Front Microbiol 6:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328

    Article  Google Scholar 

  • Thingstad TF, Bratbak G, Heldal M (2008) Aquatic phage ecology. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 251–280

    Chapter  Google Scholar 

  • Tikhe CV, Husseneder C (2017) Metavirome sequencing of the termite but reveals the presence of an unexplored bacteriophage community. Front Microbiol 8:2548

    Article  PubMed  Google Scholar 

  • Touchon M, de Sousa JAM, Rocha EP (2017) Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr Opin Mirobiol 38:66–73

    Article  CAS  Google Scholar 

  • Tringe SG, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 11:442–446

    Article  CAS  PubMed  Google Scholar 

  • Tromas N, Zwart MP, Lafforgue G, Elena SF (2014) Within-host spatiotemporal dynamics of plant virus infection at the cellular level. PLoS Genet 10:e1004186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trubl G, Hyman P, Roux S, Abedon ST (2020) Coming-of-age characterization of soil vuruses: a user's guide to virus isolation, detection within metagenomes, and viromics. Soil Sys 4:23

    Article  Google Scholar 

  • Tucker KP, Parsons R, Symonds EM, Breitbart M (2011) Diversity and distribution of single-stranded DNA phages in the North Atlantic Ocean. ISME J 5:822–830

    Article  CAS  PubMed  Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MG (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111:5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914

    Article  CAS  PubMed  Google Scholar 

  • Wang I-N (2006) Lysis timing and bacteriophage fitness. Genetics 172:17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasik BR, Bhushan A, Ogbunugafor CB, Turner PE (2015) Delayed transmission selects for increased survival of vesicular stomatitis virus. Evolution; Int J Organic Evolut 69:117–125

    Article  CAS  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  CAS  PubMed  Google Scholar 

  • Whon TW, Kim MS, Roh SW, Shin NR, Lee HW, Bae JW (2012) Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere. J Virol 86:8221–8231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49:781–788

    Article  Google Scholar 

  • Williams ST, Mortimer AM, Manchester L (1987) Ecology of soil bacteriophages. In: Goyal SM, Gerba CP, Bitton G (eds) Phage ecology. Wiley, New York, pp 157–179

    Google Scholar 

  • Williamson KE (2018) Viruses of microorganisms in soil ecosystems. In: Hyman P, Abedon ST (eds) Viruses of microorganisms. Caister Academic Press, Norwich, pp 77–93

    Google Scholar 

  • Williamson KE, Wommack KE, Radosevich M (2003) Sampling natural viral communities from soil for culture-independent analyses. Appl Environ Microbiol 69:6628–6633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson KE, Radosevich M, Wommack KE (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 71:3119–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson KE, Radosevich M, Smith DW, Wommack KE (2007) Incidence of lysogeny within temperate and extreme soil environments. Environ Microbiol 9:2563–2574

    Article  CAS  PubMed  Google Scholar 

  • Williamson KE, Corzo KA, Drissi CL, Buckingham JM, Thompson CP, Helton RR (2013) Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol Fertil Soils 49:857–869

    Article  Google Scholar 

  • Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M (2017) Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol 4:201–219

    Article  CAS  PubMed  Google Scholar 

  • Winter C, Bouvier T, Weinbauer MG, Thingstad TF (2010) Trade-offs between competition and defense specialists among unicellular planktonic organisms: the "killing the winner" hypothesis revisited. Microbiol Mol Biol Rev 74:42–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young R (2014) Phage lysis: three steps, three choices, one outcome. J Microbiol 52:243–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QG, Buckling A (2011) Antagonistic coevolution limits population persistence of a virus in a thermally deteriorating environment. Ecol Lett 14:282–288

    Article  PubMed  Google Scholar 

  • Zheng Y, Struck DK, Dankenbring CA, Young R (2008) Evolutionary dominance of holin lysis systems derives from superior genetic malleability. Microbiology 154:1710–1718

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Abedon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dennehy, J.J., Abedon, S.T. (2020). Bacteriophage Ecology. In: Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-40598-8_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40598-8_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40598-8

  • Online ISBN: 978-3-319-40598-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics