Skip to main content

Using ILP to Identify Pathway Activation Patterns in Systems Biology

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9575))

Included in the following conference series:

  • 535 Accesses

Abstract

We show a logical aggregation method that, combined with propositionalization methods, can construct novel structured biological features from gene expression data. We do this to gain understanding of pathway mechanisms, for instance, those associated with a particular disease. We illustrate this method on the task of distinguishing between two types of lung cancer; Squamous Cell Carcinoma (SCC) and Adenocarcinoma (AC). We identify pathway activation patterns in pathways previously implicated in the development of cancers. Our method identified a model with comparable predictive performance to the winning algorithm of a recent challenge, while providing biologically relevant explanations that may be useful to a biologist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Croft, D., Mundo, A.F., Haw, R., Milacic, M., Weiser, J., Guanming, W., Caudy, M., Garapati, P., Gillespie, M., Kamdar, M.R., et al.: The Reactome pathway knowledgebase. Nucleic Acids Res. 42(D1), D472–D477 (2014)

    Article  Google Scholar 

  2. Rhrissorrakrai, K., Jeremy Rice, J., Boue, S., Talikka, M., Bilal, E., Martin, F., Meyer, P., Norel, R., Xiang, Y., Stolovitzky, G., Hoeng, J., Peitsch, M.C.: SBV improver diagnostic signature challenge: design and results. Syst. Biomed. 1(4), 3–14 (2013)

    Google Scholar 

  3. Tarca, A.L., Than, N.G., Romero, R.: Methodological approach from the best overall team in the SBV Improver Diagnostic Signature Challenge. Syst. Biomed. 1(4), 217–227 (2013)

    Article  Google Scholar 

  4. Draghici, S.: Statistical intelligence: effective analysis of high-density microarray data. Drug Discov. Today 7(11), S55–S63 (2002)

    Article  Google Scholar 

  5. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Nat. Acad. Sci. 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  6. Gamberger, D., Lavrač, N., Železnỳ, F., Tolar, J.: Induction of comprehensible models for gene expression datasets by subgroup discovery methodology. J. Biomed. Inf. 37(4), 269–284 (2004)

    Article  Google Scholar 

  7. Holec, M., Klma, J., Železnỳ, F., Tolar, J.: Comparative evaluation of set-level techniques in predictive classification of gene expression samples. BMC Bioinform. 13(Suppl 10), S15 (2012)

    Article  Google Scholar 

  8. Whelan, K., Ray, O., King, R.D.: Representation, simulation, and hypothesis generation in graph and logical models of biological networks. In: Castrillo, J.I., Oliver, S.G. (eds.) Yeast Systems Biology, pp. 465–482. Springer, New York (2011)

    Chapter  Google Scholar 

  9. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech. Theory Exp. 2005(09), P09008 (2005)

    Article  Google Scholar 

  10. Kim, W., Li, M., Wang, J., Pan, Y.: Biological network motif detection and evaluation. BMC Syst. Biol. 5(Suppl 3), S5 (2011)

    Article  Google Scholar 

  11. Holec, M., Železnỳ, F., Kléma, J., Svoboda, J., Tolar, J.: Using bio-pathways in relational learning. Inductive Logic Programming, p. 50 (2008)

    Google Scholar 

  12. De Raedt, L.: Logical and Relational Learning. Springer Science & Business Media, New York (2008)

    Book  MATH  Google Scholar 

  13. Flach, P.A., Lachiche, N.: 1BC: a first-order bayesian classifier. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 92–103. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Lavrač, N., Vavpetič, A.: Relational and semantic data mining. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS, vol. 9345, pp. 20–31. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  15. Dehaspe, L., De Raedt, L.: Mining association rules in multiple relations. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 125–132. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  16. Ahmed, C.F., Lachiche, N., Charnay, C., Jelali, S.E., Braud, A.: Flexible propositionalization of continuous attributes in relational data mining. Expert Systems with Applications (2015)

    Google Scholar 

  17. Perlich, C., Provost, F.: Distribution-based aggregation for relational learning with identifier attributes. Mach. Learn. 62(1–2), 65–105 (2006)

    Article  Google Scholar 

  18. França, M.V.M., Zaverucha, G., d’Avila Garcez, A.S.: Fast relational learning using bottom clause propositionalization with artificial neural networks. Mach. Learn. 94(1), 81–104 (2014)

    Article  MathSciNet  Google Scholar 

  19. Ristoski, P., Paulheim, H.: A comparison of propositionalization strategies for creating featuresfrom linked open data. In: Linked Data for Knowledge Discovery, p. 6 (2014)

    Google Scholar 

  20. Ristoski, P.: Towards linked open data enabled data mining. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 772–782. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  21. Kuželka, O., Železnỳ, F.: Block-wise construction of tree-like relational features with monotone reducibility and redundancy. Mach. Learn. 83(2), 163–192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Edgar, R., Domrachev, M., Lash, A.E.: Gene expression omnibus: NCBI gene expression and hybridizationarray data repository. Nucleic Acids Res. 30(1), 207–210 (2002)

    Article  Google Scholar 

  23. Wang, R.-S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an overview of methodology and applications. Phy. Biol. 9(5), 055001 (2012)

    Article  Google Scholar 

  24. McCall, M.N., Jaffee, H.A., Zelisko, S.J., Sinha, N., Hooiveld, G., Irizarry, R.A., Zilliox, M.J.: The Gene Expression Barcode 3.0: improved data processing and mining tools. Nucleic Acids Res. 42(D1), D938–D943 (2014)

    Article  Google Scholar 

  25. Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15(2), 221–231 (2003)

    Article  Google Scholar 

  26. Lavrač, N., Kavšek, B., Flach, P.A., Todorovski, L.: Subgroup discovery with CN2-SD. J. Mach. Learn. Res. 5, 153–188 (2004)

    MathSciNet  Google Scholar 

  27. Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., Müller, M.: pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12(1), 77 (2011)

    Article  Google Scholar 

  28. Rongrong, W., Galan-Acosta, L., Norberg, E.: Glucose metabolism provide distinct prosurvival benefits to non-small cell lung carcinomas. Biochem. Biophy. Res. Commun. 460(3), 572–577 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

LACM received funding from the Medical Research Council (MC_UU_12013/8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel R. Neaves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Neaves, S.R., Millard, L.A.C., Tsoka, S. (2016). Using ILP to Identify Pathway Activation Patterns in Systems Biology. In: Inoue, K., Ohwada, H., Yamamoto, A. (eds) Inductive Logic Programming. ILP 2015. Lecture Notes in Computer Science(), vol 9575. Springer, Cham. https://doi.org/10.1007/978-3-319-40566-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40566-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40565-0

  • Online ISBN: 978-3-319-40566-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics