Skip to main content

Relational Kernel-Based Grasping with Numerical Features

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9575))

Included in the following conference series:

  • 498 Accesses

Abstract

Object grasping is a key task in robot manipulation. Performing a grasp largely depends on the object properties and grasp constraints. This paper proposes a new statistical relational learning approach to recognize graspable points in object point clouds. We characterize each point with numerical shape features and represent each cloud as a (hyper-) graph by considering qualitative spatial relations between neighboring points. Further, we use kernels on graphs to exploit extended contextual shape information and compute discriminative features which show improvement upon local shape features. Our work for robot grasping highlights the importance of moving towards integrating relational representations with low-level descriptors for robot vision. We evaluate our relational kernel-based approach on a realistic dataset with 8 objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These results contain an errata to the results reported in [20].

References

  1. Aleotti, J., Caselli, S.: Part-based robot grasp planning from human demonstration. In: ICRA, pp. 4554–4560 (2011)

    Google Scholar 

  2. Antanas, L., Frasconi, P., Costa, F., Tuytelaars, T., De Raedt, L.: A relational kernel-based framework for hierarchical image understanding. In: Gimel’farb, G.L., Hancock, E.R., Imiya, A.I., Kuijper, A., Kudo, M., Shinichiro Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 171–180. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Baltzakis, H.: Orca simulator (2005). http://www.ics.forth.gr/cvrl/_software/orca_setup.exe

  4. Bohg, J., Kragic, D.: Learning grasping points with shape context. RAS 58(4), 362–377 (2010)

    Google Scholar 

  5. Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: CVPR, pp. 2559–2566 (2010)

    Google Scholar 

  6. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)

    Article  Google Scholar 

  7. Costa, F., De Grave, K.: Fast neighborhood subgraph pairwise distance kernel. In: ICML, pp. 255–262 (2010)

    Google Scholar 

  8. De Raedt, L.: Logical and Relational Learning. Cognitive Technologies. Springer, New York (2008)

    Book  MATH  Google Scholar 

  9. Farid, R., Sammut, C.: Plane-based object categorisation using relational learning. ML 94(1), 3–23 (2014)

    MathSciNet  Google Scholar 

  10. Farid, R., Sammut, C.: Region-based object categorisation using relational learning. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS, vol. 8862, pp. 357–369. Springer, heidelberg (2014)

    Google Scholar 

  11. Frasconi, P., Costa, F., De Raedt, L., De Grave, K.: kLog: a language for logical and relational learning with kernels. Artif. Intell. 217, 117–143 (2014)

    Article  MATH  Google Scholar 

  12. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book, 2nd edn. Prentice Hall Press, Upper Saddle River (2008)

    Google Scholar 

  13. Haussler, D.: Convolution kernels on discrete structures. Technical report UCSC-CRL-99-10, University of California at Santa Cruz (1999)

    Google Scholar 

  14. Jia, Y., Huang, C., Darrell, T.: Beyond spatial pyramids: Receptive field learning for pooled image features. In: CVPR, pp. 3370–3377 (2012)

    Google Scholar 

  15. Jiang, Y., Moseson, S., Saxena, A.: Efficient grasping from rgbd images: Learning using a new rectangle representation. In: ICRA, pp. 3304–3311 (2011)

    Google Scholar 

  16. Kraft, D., Detry, R., Pugeault, N., Baseski, E., Guerin, F., Piater, J.H., Krüger, N.: Development of object and grasping knowledge by robot exploration. IEEE T. Auton. Mental Dev. 2(4), 368–383 (2010)

    Article  Google Scholar 

  17. Kraft, D., Detry, R., Pugeault, N., Başeski, E., Piater, J., Krüger, N.: Learning objects and grasp affordances through autonomous exploration. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 235–244. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Krtgen, M., Novotni, M., Klein, R.: 3D shape matching with 3D shape contexts. In: The 7th Central European Seminar on Computer Graphics (2003)

    Google Scholar 

  19. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. CoRR abs/1301.3592 (2013)

    Google Scholar 

  20. Mocanu-Antanas, L.: Relational Visual Recognition. Ph.D. thesis, Informatics Section, Department of Computer Science, Faculty of Engineering Science (2014)

    Google Scholar 

  21. Montesano, L., Lopes, M.: Learning grasping affordances from local visual descriptors. In: ICDL, pp. 1–6. IEEE Computer Society (2009)

    Google Scholar 

  22. Montesano, L., Lopes, M.: Active learning of visual descriptors for grasping using non-parametric smoothed beta distributions. Humanoids 60(3), 452–462 (2012)

    Google Scholar 

  23. Moreno, P., Hornstein, J., Santos-Victor, J.: Learning to grasp from point clouds. Technical report Vislab-TR001/2011, Department of Electrical and Computers Engineering, Instituto Superior Técnico, Portugal, September 2011

    Google Scholar 

  24. Muja, M., Ciocarlie, M.: Table top segmentation package (2012). http://www.ros.org/wiki/tabletop_object_detector

  25. Neumann, M., Garnett, R., Moreno, P., Patricia, N., Kersting, K.: Propagation kernels for partially labeled graphs. In: MLG-2012 (2012)

    Google Scholar 

  26. Neumann, M., Moreno, P., Antanas, L., Garnett, R., Kersting, K.: Graph kernels for object category prediction in task-dependent robot grasping. In: MLG-2013 (2013)

    Google Scholar 

  27. Rusu, R.B.: Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. Ph.D. thesis, Computer Science Department, Technische Universitat Munchen, Germany, October 2009

    Google Scholar 

  28. Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the viewpoint feature histogram. In: IROS. Taipei, Taiwan, October 2010

    Google Scholar 

  29. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. IJRR 27(2), 157–173 (2008)

    Google Scholar 

  30. Saxena, A., Wong, L.L.S., Ng, A.Y.: Learning grasp strategies with partial shape information. In: AAAI, pp. 1491–1494. AAAI Press (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Antanas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Antanas, L., Moreno, P., De Raedt, L. (2016). Relational Kernel-Based Grasping with Numerical Features. In: Inoue, K., Ohwada, H., Yamamoto, A. (eds) Inductive Logic Programming. ILP 2015. Lecture Notes in Computer Science(), vol 9575. Springer, Cham. https://doi.org/10.1007/978-3-319-40566-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40566-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40565-0

  • Online ISBN: 978-3-319-40566-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics