Skip to main content

Emulsions of Omega-3 Fatty Acids for Better Bioavailability and Beneficial Health Effects

  • Chapter
  • First Online:
Omega-3 Fatty Acids

Abstract

Omega-3 polyunsaturated fatty acids (PUFAs) have therapeutics and health benefits. It plays an important role in maintaining normal physiological functions and protects cardiovascular diseases. To harness their beneficial health effects, daily consumption of omega-3 fatty acid-fortified food has been recommended. Susceptibility of omega-3 fatty acids to oxidation proved major hurdle in the development of PUFA-enriched food. Lipid oxidation decreases shelf life, nutritional value, consumer acceptability, and functionality of fortified food items. In addition, oxidized products of omega-3 fatty acids are believed to pose serious health hazards. Emulsification of omega-3 fatty acids prevents oxidation and off-flavor formation in foods fortified with omega-3 fatty acids. Emulsion can be made by phase titration, phase inversion, homogenization, and sonication methods. Proteins and polysaccharides are employed as emulsifier and forms coating around oil droplet during the process of emulsion formation. Stability to emulsion of omega-3 fatty acids is further improved by using variety of microencapsulation techniques. Emulsion of omega-3 fatty acids prevents lipid oxidation and offers not only increased stability and shelf life but also better bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dyerberg J, Bang H, Hjorne N. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr. 1975;28:958–66.

    CAS  PubMed  Google Scholar 

  2. Dyerberg J, Bang H. Haemostatic function and platelet polyunsaturated fatty acids in Eskimos. Lancet. 1979;2:433–5.

    Article  CAS  PubMed  Google Scholar 

  3. Wang C, Harris W, Chung M, Lichtenstein A, Balk E, Kupelnick B, Jordan H, Lau J. n3 fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr. 2006;84:5–17.

    CAS  PubMed  Google Scholar 

  4. Dyall S, Michael-Titus A. Neurological benefits of omega-3 fatty acids. NeuroMol Med. 2008;4:219–35.

    Article  CAS  Google Scholar 

  5. Lin P, Su K. A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J Clin Psychiatry. 2007;68:1056–61.

    Article  CAS  PubMed  Google Scholar 

  6. Richardson A. Omega-3 fatty acids in ADHD and related neurodevelopmental disorders. Int Rev Psychiatry. 2006;18:155–72.

    Article  PubMed  Google Scholar 

  7. Cole G, Lim G, Yang F, Teter B, Begum A, Ma Q, HarrisWhite M, Frautschy S. Prevention of Alzheimer’s disease: Omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol Aging. 2005;26:133–6.

    Article  PubMed  CAS  Google Scholar 

  8. Lorenz R, Weber P, Szimnau P, Heldwein W, Strasser T, Loeschke K. Supplementation with n3 fatty acids from fish oil in chronic inflammatory bowel disease—a randomized, placebo-controlled, double-blind cross-over trial. J Intern Med. 1989;225:225–32.

    Article  Google Scholar 

  9. Aslan A, Triadafilopoulos G. Fish oil fatty acid supplementation in active ulcerative colitis: a double-blind, placebo-controlled, crossover study. Am J Gastroenterol. 1992;87:432–7.

    CAS  PubMed  Google Scholar 

  10. Belluzzi A, Brignola C, Campieri M, Pera A, Boschi S, Miglioli M. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease. N Engl J Med. 1996;334:1557–60.

    Article  CAS  PubMed  Google Scholar 

  11. Kim Y. Can fish oil maintain Crohn’s disease in remission? Nutr Rev. 1996;54:248–52.

    Article  CAS  PubMed  Google Scholar 

  12. Goldberg R, Katz J. A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain. 2007;129:210–23.

    Article  CAS  PubMed  Google Scholar 

  13. Friedman A, Moe S. Review of the effects of omega-3 supplementation in dialysis patients. Clinic J Am Soc Nephrol. 2006;1:182–92.

    Article  CAS  Google Scholar 

  14. Namiki M. Nutraceutical functions of sesame: a review. Crit Rev Food Sci Nutr. 2007;47:651–73.

    Article  CAS  PubMed  Google Scholar 

  15. Whelan J, Rust C. Innovative dietary sources of n-3 fatty acids. Annu Rev Nutr. 2006;26:75–103.

    Article  CAS  PubMed  Google Scholar 

  16. Muggli R. Applications in food products. In: Breivik H, editor. Long-chain omega-3 specialty oils. UK: The Oily Press; 2007. p. 165–95.

    Google Scholar 

  17. Jacobsen C, Hartvigsen K, Lund P, Thomsen M, Skibsted L, Holmer G, et al. Oxidation in fish oilenriched mayonnaise: 4. Effect of tocopherol concentration on oxidative deterioration. Eur Food Res Technol. 2001;212:308–18.

    Article  CAS  Google Scholar 

  18. Jacobsen C, Hartvigsen K, Lund P, Meyer AS, Alder-Nissen J, Holstborg J, et al. Oxidation in fish oil enriched mayonnaise. 1. Assessment of propyl gallate as an antioxidant by discriminant partial least squares regression analysis. Eur Food Res Technol. 1999;210:13–30.

    Article  CAS  Google Scholar 

  19. Vichi S, Pizzale L, Conte L, Buxaderas S, Lopez-Tamames E. Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: modifications induces by oxidation and suitable markers of oxidative status. J Agric Food Chem. 2003;51:6564–71.

    Article  CAS  PubMed  Google Scholar 

  20. Valero E, Villamiel M, Miralles B, Sanz J, Martınez-Castro I. Changes in flavour and volatile components during storage of whole and skimmed UHT milk. Food Chem. 2001;72:51–8.

    Article  CAS  Google Scholar 

  21. Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, et al. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem. 1999;47:3954–62.

    Article  CAS  PubMed  Google Scholar 

  22. Kampa M, Niffi A, Notas G, Castanas E. Polyphenols and cancer cell growth. Rev Physiol Biochem Pharmacol. 2007;159:79–113.

    CAS  PubMed  Google Scholar 

  23. Nair V, Cooper C, Vietti D, Turner G. The chemistry of lipidperoxidation metabolites—cross-linking reactions of malondialdehyde. Lipids. 1986;21:6–10.

    Article  CAS  PubMed  Google Scholar 

  24. Nuchi C, McClements D, Decker E. Impact of Tween 20 hydroperoxides and iron on the oxidation of methyl linoleate and salmon oil dispersions. J Agric Food Chem. 2001;49:4912–6.

    Article  CAS  PubMed  Google Scholar 

  25. Frankel EN. Lipid oxidation. 2nd ed. UK: Barnes and Associates; 2005.

    Book  Google Scholar 

  26. Kolanowski W, Jaworska D, Weibrodt J, Kunz B. Sensory assessment of microencapsulated fish oil powder. J Am Oil Chem Soc. 2007;84:37–45.

    Article  CAS  Google Scholar 

  27. Lagarde M. Oxygenated metabolites of polyunsaturated fatty acids: formation and function in blood and vascular cells. Eur J Lipid Sci Technol. 2010;112:941–7.

    Article  CAS  Google Scholar 

  28. Dobarganes C, Marquez-Ruz G. Oxidized fats in foods. Curr Opinion Clinic Nutr Metab Care. 2003;6:157–63.

    Article  CAS  Google Scholar 

  29. Derle D, Sagar B, Pimpale R. Microemulsions as a vehicle for transdermal permeation of nimesulide. Indian J Pharm Sci. 2006;68:624–5.

    Google Scholar 

  30. Kumar P, Mittal KL, editors. Handbook of microemulsion science and technology. New York: Marcel Dekker; 1999, Chapters 1–3 and 8.

    Google Scholar 

  31. Link D, Anna S, Weitz D, Stone H. Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett. 2004;92:0544031–4.

    Google Scholar 

  32. McClements DJ. Food emulsions. Principles, practices and techniques. Boca Raton: CRC Press; 2005.

    Google Scholar 

  33. Sheikh S, Faiyaz S, Sushma T, Farhan J. Development and bioavailability assessment of ramiprilnanoemulsionforumulation. Eur J Phar Bio. 2007;66:227–43.

    Article  CAS  Google Scholar 

  34. Shinoda K, Saito H. The effect of temperature on the phase equillibria and the type of dispersion of the ternary system composed of water, cyclohexane and nonionic surfactant. J Colloid Interface Sci. 1968;26:70–4.

    Article  CAS  Google Scholar 

  35. Floury J, Axelos M, Legrand J. Effect of high pressure homogenization on methylcellulose as food emulsifier. J Food Engg. 2003;58:227–38.

    Article  Google Scholar 

  36. Walstra P. Emulsion stability. In: Becher P, editor. Encyclopedia of emulsion technology. New York: Marcel Dekker; 1996. p. 1–62.

    Google Scholar 

  37. Genot C, Berton C, Ropers M. The role of the interfacial layer and emulsifying proteins in the oxidation in oil-in-water emulsions. In: Logan A, Nienaber U, Pan X, editors. Lipid oxidation: challenges in food systems. Urbana, IL: AOCS Press; 2013. p. 177–210.

    Chapter  Google Scholar 

  38. Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll. 2009;23:1473–82.

    Article  CAS  Google Scholar 

  39. Euston S, Hirst R. Comparison of the concentration-dependent emulsifying properties of protein products containing aggregated and non-aggregated milk protein. Intl Dairy J. 1999;9:693–701.

    Article  CAS  Google Scholar 

  40. Chapleau N, DeLamballerie-Anton M. Improvement of emulsifying properties of lupin proteins by high pressure induced aggregation. Food Hydrocoll. 2003;17:273–80.

    Article  CAS  Google Scholar 

  41. Relkin P, Sourdet S, Smith A, Goff H, Cuvelier G. Effects of whey protein aggregation on fat globule microstructure in whipped-frozen emulsions. Food Hydrocoll. 2006;20:1050–6.

    Article  CAS  Google Scholar 

  42. Mahmoudi N, Axelos M, Riaublanc A. Interfacial properties of fractal and spherical whey protein aggregates. Soft Matter. 2011;7:7643–54.

    Article  CAS  Google Scholar 

  43. Audebrand M, Ropers M, Riaublanc A. Disappearance of intermolecular beta-sheets upon adsorption of beta-lactoglobulin aggregates at the oil-water interfaces of emulsions. Food Hydrocoll. 2013;33:178–85.

    Article  CAS  Google Scholar 

  44. Dickinson E. Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. Colloids Surf B Biointerfaces. 1999;15:161–76.

    Article  CAS  Google Scholar 

  45. Guzey D, McClements D. Impact of electrostatic interactions onformation and stability of emulsions containing oil droplets coated by beta-lactoglobulin-pectin complexes. J Agric Food Chem. 2007;55:475–85.

    Article  CAS  PubMed  Google Scholar 

  46. Grigoriev D, Miller R. Mono- and multilayer covered drops as carriers. Curr Opin Colloid Interface Sci. 2009;14:48–59.

    Article  CAS  Google Scholar 

  47. Dickinson E. An introduction to food colloids. Oxford: Oxford University Press; 1992.

    Google Scholar 

  48. Wilde P, Mackie A, Husband F, Gunning P, Morris V. Proteins and emulsifiers at liquid interfaces. Adv Colloid Interface Sci. 2004;108:63–71.

    Article  PubMed  CAS  Google Scholar 

  49. Dalgleish D. The sizes and conformations of the proteins in adsorbed layers of individual caseins on latices and in oil-in-water emulsions. Colloids Surf B Biointerfaces. 1993;1:1–8.

    Article  CAS  Google Scholar 

  50. Fang Y, Dalgleish D. Dimensions of the adsorbed layers in oil-in-water emulsions stabilized by caseins. J Colloid Interface Sci. 1993;156:329–34.

    Article  CAS  Google Scholar 

  51. Atkinson P, Dickinson E, Horne D, Richardson R. Neutron reflectivity of adsorbed beta-casein and beta-lactoglobulin at the air/water interface. J Chem Soc Faraday Trans. 1995;91:2847–54.

    Article  CAS  Google Scholar 

  52. Singh H. Aspects of milk-protein-stabilised emulsions. Food Hydrocoll. 2011;25:1938–44.

    Article  CAS  Google Scholar 

  53. Tcholakova S, Denkov N, Lips A. Comparison of solid particles, globular proteins and surfactants as emulsifiers. Phys Chem Chem Phys. 2008;10:1608–27.

    Article  CAS  PubMed  Google Scholar 

  54. Dimitrova T, Leal-Calderon F. Forces between emulsion droplets stabilized with Tween 20 and proteins. Langmuir. 1999;15:8813–21.

    Article  CAS  Google Scholar 

  55. Dimitrova T, Leal-Calderon F, Gurkov T, Campbell B. Disjoining pressure vs thickness isotherms of thin emulsion films stabilized by proteins. Langmuir. 2001;17:8069–77.

    Article  CAS  Google Scholar 

  56. Dimitrova T, Leal-Calderon F, Gurkov T, Campbell B. Surface forces in model oil-in-water emulsions stabilized by proteins. Adv Colloid Interface Sci. 2004;108:73–86.

    Article  PubMed  CAS  Google Scholar 

  57. Nielsen N, Jacobsen C. Methods for reducing lipid oxidation in fish oil enriched energy bars. Int J Food Sci Tech. 2009;44:1536–46.

    Article  CAS  Google Scholar 

  58. Ye A, Cui J, Taneja A, Zhu X, Singh H. Evaluation of processed cheese fortified with fish oil emulsion. Food Res Int. 2009;42:1093–8.

    Article  CAS  Google Scholar 

  59. Drusch S, Serfert Y, Schwarz K. Microencapsulation of fish oil with n-octenylsuccinate-derivatised starch: flow properties and oxidative stability. Eur Food Res Technol. 2006;108:501–12.

    CAS  Google Scholar 

  60. Buera P, Schebor C, Elizalde B. Effects of carbohydrate crystallization on stability of dehydrated foods and ingredients formulations. J Food Eng. 2005;67:157–65.

    Article  Google Scholar 

  61. Helena C, Renata V, Carloss R, Míriam D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng. 2013;115:443–51.

    Article  CAS  Google Scholar 

  62. Ries D, Ye A, Haisman D, Singh H. Antioxidant properties of caseins and whey proteins in model oil-in-water emulsions. Int Dairy J. 2010;20:72–8.

    Article  CAS  Google Scholar 

  63. Horn A, Nielsen N, Andersen U, Sogaard L, Horsewell A, Jacobsen C. Oxidative stability of 70 % fish oil-in-water emulsions: impact of emulsifiers and pH. Eur J Lipid Sci Technol. 2011;113:1243–57.

    Article  CAS  Google Scholar 

  64. Kargar M, Spyropoulos F, Norton I. The effect of interfacial microstructure on the lipid oxidation stability of oil-in-water emulsions. J Colloid Interface Sci. 2011;357:527–33.

    Article  CAS  PubMed  Google Scholar 

  65. Faraji H, McClements D, Decker E. Role of continuous phase protein on the oxidative stability of fish oil-in water emulsions. J Agric Food Chem. 2004;52:4558–64.

    Article  CAS  PubMed  Google Scholar 

  66. Hekmat S, Mcmahon D. Distribution of iron between caseins and whey proteins in acidified milk. Food Sci Technol (Lebensmittel- Wissenschaft&Technologie). 1998;31:632–8.

    Article  CAS  Google Scholar 

  67. Tong L, Sasaki S, McClements D, Decker E. Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J Agric Food Chem. 2000;48:1473–8.

    Article  CAS  PubMed  Google Scholar 

  68. Diaz M, Dunn C, McClements D, Decker E. Use of caseinophosphopeptides as natural antioxidants in oil-in-water emulsions. J Agric Food Chem. 2003;51:2365–70.

    Article  CAS  PubMed  Google Scholar 

  69. Elias R, McClements D, Decker E. Antioxidant activity of cysteine, tryptophan, and methionine residues in continuous phase beta-lactoglobulin in oil-in-water emulsions. J Agric Food Chem. 2005;53:10248–53.

    Article  CAS  PubMed  Google Scholar 

  70. Reineccius G. Flavor encapsulation. Food Rev Int. 1989;5:147–76.

    Article  CAS  Google Scholar 

  71. Deis R. Spray-drying-innovative use of an old process. Food Product Design. 1997;7:97–113.

    Google Scholar 

  72. Arshady R. Microspheres, microcapsules and liposomes. In: Arshady R, editor. Preparation and chemical applications. London, UK: Citus Books. vol. I; 1999, p. 279–322.

    Google Scholar 

  73. Dziezak J. Microencapsulation and encapsulation ingredients. Food Technolog. 1988;42:136–51.

    Google Scholar 

  74. Teixeira M, Andrade L, Farina M, Rocha-Leao M. Characterization of short chain fatty acid microcapsules produced by spray drying. Mater Sci Eng, C. 2004;24:653–8.

    Article  CAS  Google Scholar 

  75. Risch S. Encapsulation: overview of uses and techniques. In: Rish SJ, Reineccius GA, editors. Encapsulation and controlled release of food ingredient. Washington, DC: American Chemical Society; 1995. p. 2–7.

    Chapter  Google Scholar 

  76. Watanabe Y, Fang X, Minemoto Y, Adachi S, Matsuno R. Suppressive effect of saturated Lascorbate on the oxidation of linoleic acid encapsulated with maltodextrin or gum arabic by spray-drying. J Agric Food Chem. 2002;50:3984–7.

    Article  CAS  PubMed  Google Scholar 

  77. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int. 2007;40:1107–21.

    Article  CAS  Google Scholar 

  78. Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarsk B. An overview of encapsulation technologies for food applications. In: 11th international congress on engineering and food. vol. 1. 2011; p. 1806–15.

    Google Scholar 

  79. Soottitantawat A, Yoshii H, Furuta T, Ohkawara M, Linko P. Microencapsulation by spray drying: Influence of emulsion size on the retention of volatile compounds. J Food Sci. 2003;68:2256–62.

    Article  CAS  Google Scholar 

  80. Jafari S, Assadpoor E, Bhandari B, He Y. Nanoparticle encapsulation of fish oil by spray drying. Food Res Int. 2008;41:172–83.

    Article  CAS  Google Scholar 

  81. Fang X, Shima M, Adachi S. Effects of drying conditions on the oxidation of linoleic acid encapsulated with gum arabic by spray-drying. Food Sci Technol Res. 2005;11:380–4.

    Article  CAS  Google Scholar 

  82. Kolanowski W, Laufenberg G, Kunz B. Fish oil stabilization by microencapsulation with modified cellulose. Int J Food Sci Nutr. 2004;55:333–43.

    Article  CAS  PubMed  Google Scholar 

  83. Kolanowski W, Ziolkowski M, Weibrodt J, Kunz B, Laufenberg G. Microencapsulation of fish oil by spray drying–impact on oxidative stability. Part 1. Eur Food Res Technol. 2006;22:336–42.

    Article  CAS  Google Scholar 

  84. Luff F. Omega-3 and micro-encapsulation technology making functional foods taste better for longer. Food Sci Technol. 2007;21:30–1.

    CAS  Google Scholar 

  85. Augustin M, Sanguansri L, Bode O. Maillard reaction products as encapsulants for fish oil powders. J Food Sci. 2006;71:25–32.

    Article  Google Scholar 

  86. Jacquot M, Pernetti M. Spray coating and drying processes. In: Nedovic U, Willaert R, editors. Cell immobilization biotechnology. Series: Focus on biotechnology. Dordrecht: Kluwer Academic Publishers. 2003; p. 343–56.

    Google Scholar 

  87. Atmane M, Muriel J, Joel S, Stephane. Desobry flavour encapsulation and controlled release—a review. Int J Food Sci Technol. 2006;41:1–21.

    Google Scholar 

  88. Buffo R, Probst K, Zehentbauer G, Luo Z, Reineccius G. Effects of agglomeration on the properties of spray-dried encapsulated flavours. Flavour Fragr J. 2002;17:292–9.

    Article  CAS  Google Scholar 

  89. Skelbaek T, Andersen S. WO94/01001. 1994.01.20. 1994.

    Google Scholar 

  90. Ponginebbi L, Publisi C. Coating for oxygen sensitive materials, EP1920633 & US2008112987. 2008.

    Google Scholar 

  91. Minemoto Y, Adachi S, Matsuno R. Comparison of oxidation of methyl linoleate encapsulated with gum arabic by hot-air-drying and freeze-drying. J Agric Food Chem. 1997;45:4530–4.

    Article  CAS  Google Scholar 

  92. Heinzelmann K, Franke K. Using freezing and drying techniques of emulsions for the microencapsulation of fish oil to improve oxidation stability. Colloids Surf, B. 1999;12:223–9.

    Article  CAS  Google Scholar 

  93. Heinzelmann K, Franke K, Valesco J, Marquez-Ruiz G. Protection of fish oil from oxidation by microencapsulation using freeze-drying techniques. Eur Food Res Technol. 2000;211:234–9.

    Article  CAS  Google Scholar 

  94. Anwar SH, Kunz B. The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray granulation, spray drying, and freeze drying. J Food Eng. 2011;105:367–78.

    Article  CAS  Google Scholar 

  95. Desobry S, Netto F, Labuza T. Comparison of spray-drying, drum-drying and freeze-drying for b-carotene encapsulation and preservation. J Food Sci. 1997;62:1158–62.

    Article  CAS  Google Scholar 

  96. Gouin S. Micro-encapsulation: Industrial appraisal of existing technologies and trends. Trends Food Sci Technol. 2004;15:330–47.

    Article  CAS  Google Scholar 

  97. Thies C. Microencapsulation of flavors by complex coacervation. In: Lakkis JM, editor. Encapsulation and controlled release technologies in food systems. Ames: Blackwell Publishing; 2007. p. 149–70.

    Chapter  Google Scholar 

  98. Lemetter C, Meeuse F, Zuidam N. Control of the morphology and size of complex coacervate microcapsules during scale up. AIChE J. 2009;55:1487–96.

    Article  CAS  Google Scholar 

  99. Tabor B, Owers R, Janus J. The crosslinking of gelatin by a range of hardening agents. J Photogr Sci. 1992;40:205–11.

    Article  CAS  Google Scholar 

  100. Barrow C, Nolan C, Jin Y. Stabilization of highly unsaturated fatty acids and delivery into foods. Lipid Technol. 2007;19:108–11.

    Article  CAS  Google Scholar 

  101. Liu S, Low N, Nickerson M. Entrapment of flaxseed oil within gelatin-gum arabic capsules. J Am Oil Chem Soc. 2010;87:809–15.

    Article  CAS  Google Scholar 

  102. Strauss G, Gibson S. Plant phenolics as crosslinkers of gelatin gels and gelatin-based coacervates for use as food ingredients. Food Hydrocoll. 2004;18:81–9.

    Article  CAS  Google Scholar 

  103. Kralovec J, Zhang S, Zhang W, Barrow C. A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chem. 2012;131:639–44.

    Article  CAS  Google Scholar 

  104. Stainsby G. Proteinaceous gelling systems and their complexes with polysaccharides. Food Chem. 1980;6:3–14.

    Article  CAS  Google Scholar 

  105. Swisher, H. (1957). Solid flavouring composition and method of preparing same. US Patent no. 2,809,895. Sherman Oaks, CA: Sunkist Growers Inc.

    Google Scholar 

  106. Serfert Y, Drusch S, Schwarz K. Chemical stabilization of oils rich in long-chain polyunsaturated fats during homogenisation, microencapsulation and storage. Food Chem. 2009;113:1106–12.

    Article  CAS  Google Scholar 

  107. Horn A. Factors influencing the effect of milk based emulsifiers on lipid oxidation in Omega-3 emulsions. PhD thesis. Submitted to National Food Institute Technical University of Denmark, Denmark; 2012.

    Google Scholar 

  108. Singh P, Iqubal M, Shukla V, Shuaib M. Microemulsions: current trends in novel drug delivery systems. J Pharm Chem Biol Sci. 2014;1:39–51.

    CAS  Google Scholar 

  109. Morales D, Gutierrez J, Garci-a-Celma M, Solans Y. A study of the relation between bicontinuous microemulsion and O/W nanoemulsion formulation. Langmuir. 2003;19:7196–200.

    Article  CAS  Google Scholar 

  110. Constantinides P, Welzel G, Ellens H, Smith P, Sturgis S, Yiv S. Water-in-oil microemulsions containing medium-chain fatty acids/salts: formulation and intestinal absorption enhancement evaluation. Pharm Res. 1996;13:105–205.

    Article  Google Scholar 

  111. Constantinides P, Scalart J, Lancaster C, Marcello J, Marks G, Ellens H. Formulation and intestinal absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides. Pharm Res. 1994;11:1385–90.

    Article  CAS  PubMed  Google Scholar 

  112. Malcolmson C, Lawrence M. Three-component non-ionic oil-in-water microemulsions using polyoxyethylene ether surfactants. Colloids Surf B Biointerfaces. 1995;4:97–109.

    Article  CAS  Google Scholar 

  113. Jadhav K, Shetye S, Kadam V. Design and evaluation of microemulsion based drug delivery system. Int J Adv Pharm Sci. 2010;1:156–66.

    CAS  Google Scholar 

  114. Brime B, Moreno M, Frutos G, Ballesteros M, Frutos P. Amphotericin B in oil-water lecithin-based microemulsions: formulation and toxicity evaluation. J Pharm Sci. 2002;91:1178–85.

    Article  CAS  PubMed  Google Scholar 

  115. Patel A, Vavia P. Preparation and invivo evaluation of self-microemulsifying drug delivery system containing fenofibrate. AAPS J. 2007;9:344–52.

    Article  Google Scholar 

  116. Bajpai M, Sharma P, Mittal A. A study of oleic acid oily base for the tropical delivery of dexamethasone microemulsion formulation. Asian J Pharm. 2009;3:208–14.

    Article  Google Scholar 

  117. Kolanowski W, Jaworska D, Weibrodt J. Importance of instrumental and sensory analysis in the assessment of oxidative deterioration of omega-3 long-chain polyunsaturated fatty acid-rich foods. J Sci Food Agric. 2007;87:181–91.

    Article  CAS  Google Scholar 

  118. Kris-Etherton P, Harris W, Appel L. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747–57.

    Article  PubMed  Google Scholar 

  119. Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F, Martin A, Andres-Lacueva C, Senin U, Guralnik J. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab. 2006;91:439–46.

    Article  CAS  PubMed  Google Scholar 

  120. DeCaterina R, Zampolli A, DelTurco S, Madonna R, Massaro M. Nutritional mechanisms that influence cardiovascular disease. Am J Clin Nutr. 2006;6:421–6.

    Google Scholar 

  121. Christensen M, Hoy C, Becker C, Redgrave T. Intestinal absorption and lymphatic transport of eicosapentaenoic (EPA), docosahexaenoic (DHA), and decanoic acids: dependence on intramolecular triacylglycerol structure. Am J Clin Nutr. 1995;61:56–61.

    CAS  PubMed  Google Scholar 

  122. Wakil A, Mir M, Mellor D, Mellor S, Atkin S. The bioavailability of eicosapentaenoic acid from reconstituted triglyceride fish oil is higher than that obtained from the triglyceride and monoglyceride forms. Asia Pac J Clin Nutr. 2010;19:499–505.

    CAS  PubMed  Google Scholar 

  123. Ikeda I. Digestion and absorption of structured lipids. In: Chrisyophe AG, DeVriese S, editors. Fat digestion and absorption. Champaign, IL: AOCS Press; 2000. p. 235–43.

    Google Scholar 

  124. Bottino N, Vandenberg G, Reiser R. Resistance of certain long chain polyunsaturated fatty acids of marine oils to pancreatic lipase hydrolysis. Lipids. 1967;2:489–93.

    Article  CAS  PubMed  Google Scholar 

  125. Garaiova I, Guschina I, Plummer S, Tang J, Wang D, Plummer N. A randomized cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification. Nutr J. 2007;6:4–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Raatz S, Redmon J, Wimmergren N, Donadio J, Bibus D. Enhanced absorption of n-3 fatty acids from emulsified compared with encapsulated fish oil. J Am Diet Assoc. 2009;109:1076–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Samuelsson B, Dahlen S, Lindgren J, Rouzer C, Serhan C. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987;237:1171–6.

    Article  CAS  PubMed  Google Scholar 

  128. Serhan C, Hong S, Gronert K, Colgan S, Devchand P, Mirick G, Moussignac R. Resolvins: a family of bioactive products of ω3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002;196:1025–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Serhan C, Yang R, Martinod K, Kasuga K, Pillai P, Porter T, Oh S, Spite M. Maresins: novel macrophage mediators with potent anti-inflammatory and proresolving actions. J Exp Med. 2009;206:15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Serhan C. Systems approach to inflammation resolution: identification of novel anti-inflammatory and proresolving mediators. J Thromb Haemost. 2009;7:44–8.

    Article  CAS  PubMed  Google Scholar 

  131. Serhan C, Petasis N. Resolvins and protectins in inflammation resolution. Chem Rev. 2011;111:5922–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Serhan C, Dalli J, Karamnov S, Choi A, Park C, Xu Z, Ji R, Zhu M, Petasis N. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 2012;26:1755–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Psychogios N, Hau D, Peng J, Guo A, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen T, Smith S, Bamforth F, Greiner R, McManus B, Newman J, Goodfriend T, Wishart D. The human serum metabolome. PLoS ONE. 2011;6:16957.

    Article  CAS  Google Scholar 

  134. Mas E, Croft K, Zahra P, Barden A, Mori T. Resolvins D1, D2, and other mediators of selflimited resolution of inflammation in human blood following n3 fatty acid supplementation. Clin Chem. 2012;58:1476–84.

    Article  CAS  PubMed  Google Scholar 

  135. Higgins S, Carroll Y, Obrien N, Morrissey P. Use of microencapsulated fish oil as a means of increasing n-3 polyunsaturated fatty acid intake. J Hum Nutr Diet. 1999;12:265–71.

    Article  Google Scholar 

  136. Wallace J, McCabe A, Robson P, Keogh M, Murray C, Kelly P, Ruiz M, McGlynn H, Gilmore W, Strain J. Bioavailability of n–3 polyunsaturated fatty acids (PUFA) in foods enriched with microencapsulated fish oil. Ann Nutr Metab. 2000;44:157–62.

    Article  CAS  PubMed  Google Scholar 

  137. Barrow C, Nolan C, Holub B. Bioequivalence of encapsulated and microencapsulated fish-oil supplementation. J Funct Foods. 2009;1:38–43.

    Article  CAS  Google Scholar 

  138. Richelle M, Bortlik K, Liardet S, Hager C, Lambelet P, Baur M, Applegate L, Offord E. A food-based formulation provides lycopene with the same bioavailability to humans as that from tomato paste. J Nutr. 2002;132:404–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarang S. Puranik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Puranik, S.S. (2016). Emulsions of Omega-3 Fatty Acids for Better Bioavailability and Beneficial Health Effects. In: Hegde, M., Zanwar, A., Adekar, S. (eds) Omega-3 Fatty Acids. Springer, Cham. https://doi.org/10.1007/978-3-319-40458-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40458-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40456-1

  • Online ISBN: 978-3-319-40458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics