Skip to main content

Nutrition and Insulin Resistance During Childhood and Adolescence

  • Chapter
  • First Online:
Research into Childhood-Onset Diabetes

Abstract

Insulin resistance could be defined as “the decreased tissue response to insulin-mediated cellular actions and is the inverse of insulin sensitivity [1].” A critical effect of insulin resistance is a delayed and unsuitable release of insulin after meals. Physiologic properties of insulin are impaired at normal plasma levels [2]. The incidence of insulin resistance during childhood and adolescence varies notably, according to gender and race [3]. Patients with insulin resistance store excess calories as fats and increase gluconeogenesis from proteins and fatty acids. This metabolic phenotype has been defined as “thrifty phenotype” and a multifactorial pathogenesis has been suggested [2]. However, there are conflicting data about the role of environmental and genetic factors, and several genetic loci remain controversial (see Table 9.1) [4–14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levy-Marchal C, Arslanian S, Cutfield W, Sinaiko A, Druet C, Marcovecchio ML, Chiarelli F, ESPE-LWPES-ISPAD-APPES-APEG-SLEP-JSPE; Insulin Resistance in Children Consensus Conference Group (2010) Insulin resistance in children: consensus, perspective, and future directions. J Clin Endocrinol Metab 95(12):5189–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eyzaguirre F, Mericq V (2009) Insulin resistance markers in children. Horm Res 71(2):65–74

    CAS  PubMed  Google Scholar 

  3. Kurtoglu S, Hatipoglu N, Mazcoglu M, Kendirici M, Keskin M, Kondolot M (2010) Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods. J Clin Res Pediatr Endocrinol 2(3):100–106

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brown RJ, Yanovski JA (2014) Estimation of insulin sensitivity in children: methods, measures and controversies. Pediatr Diabetes 15(3):151–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Monetti M, Nagaraj N, Sharma K, Mann M (2011) Large-scale phosphosite quantification in tissues by a spike-in SILAC method. Nat Methods 8(8):655–658

    Article  CAS  PubMed  Google Scholar 

  6. Watanabe RM (2010) The genetics of insulin resistance: where’s Waldo? Curr Diab Rep 10(6):476–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Evrim Komurcu-Bayrak (2012) Impact of Genetic Polymorphisms on Insulin Resistance, Insulin Resistance, Dr. Sarika Arora (Ed.), InTech, doi: 10.5772/51595. Available from: http://www.intechopen.com/books/insulin-resistance/impact-of-genetic-polymorphisms-on-insulin-resistance

  8. Mansego ML, Martínez F, Martínez-Larrad MT, Zabena C, Rojo G, Morcillo S, Soriguer F, Martin-Escudero JC, Serrano-Rios M, Redon J et al (2012) Common variants of the liver fatty acid binding protein gene influence the risk of type 2 diabetes and insulin resistance in Spanish population. PLoS One 7(3):e31853

    Google Scholar 

  9. Kypreos KE, Karagiannides I, Fotiadou EH, Karavia EA, Brinkmeier MS, Giakoumi SM, Tsompanidi EM (2009) Mechanisms of obesity and related pathologies: role of apolipoprotein E in the development of obesity. FEBS J 276(20):5720–5728

    Article  CAS  PubMed  Google Scholar 

  10. Gao J, Katagiri H, Ishigaki Y, Yamada T, Ogihara T, Imai J, Uno K, Hasegawa Y, Kanzaki M, Yamamoto TT et al (2007) Involvement of apolipoprotein E in excess fat accumulation and insulin resistance. Diabetes 56(1):24–33

    Article  CAS  PubMed  Google Scholar 

  11. Mottagui-Tabar S, Hoffstedt J, Brookes AJ, Jiao H, Arner P, Dahlman I (2008) Association of ADRB1 and UCP3 gene polymorphisms with insulin sensitivity but not obesity. Horm Res 69(1):31–36

    CAS  PubMed  Google Scholar 

  12. Tschritter O, Fritsche A, Thamer C, Haap M, Shirkavand F, Rahe S, Staiger H, Maerker E, Häring H, Stumvoll M (2003) Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes 52(2):239–243

    Article  CAS  PubMed  Google Scholar 

  13. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436(7049):356–362

    Article  CAS  PubMed  Google Scholar 

  14. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM (1994) Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A 91:4854–4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ong KK, Petry CJ, Emmett PM, Sandhu MS, Kiess W, Hales CN, Ness AR, Dunger DB, ALSPAC Study Team (2004) Insulin sensitivity and secretion in normal children related to size at birth, postnatal growth, and plasma insulin-like growth factor-I levels. Diabetologia 47:1064–1070

    CAS  PubMed  Google Scholar 

  16. Goran MI, Gower BA (2001) Longitudinal study on pubertal insulin resistance. Diabetes 50:2444–2450

    Article  CAS  PubMed  Google Scholar 

  17. Hannon TS, Janosky J, Arslanian SA (2006) Longitudinal study of physiologic insulin resistance and metabolic changes of puberty. Pediatr Res 60(6):759–763

    Article  CAS  PubMed  Google Scholar 

  18. Jeffery AN, Metcalf BS, Hosking J, Streeter AJ, Voss LD, Wilkin TJ (2012) Age before stage: insulin resistance rises before the onset of puberty: a 9-year longitudinal study (EarlyBird 26). Diabetes Care 35:536–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sizonenko PC (1989) Physiology of puberty. J Endocrinol Invest 12(8 Suppl 3):59–63

    CAS  PubMed  Google Scholar 

  20. Stocker JC, Arch JRS, Cawthorne MA (2005) Fetal origins of insulin resistance and obesity. Proc Nutr Soc 64(2):143–151

    Article  CAS  PubMed  Google Scholar 

  21. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, Winter PD (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303:1019–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Newsome CA, Shiell AW, Fall CH, Phillips DI, Shier R, Law CM (2003) Is birth weight related to later glucose and insulin metabolism? – A systematic review. Diabet Med 20:339–348

    Article  CAS  PubMed  Google Scholar 

  23. Jasik CB, Lustig RH (2008) Adolescent obesity and puberty: the perfect storm. Ann N Y Acad Sci 1135:265–279

    Article  CAS  PubMed  Google Scholar 

  24. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, Bleker OP (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177

    Article  CAS  PubMed  Google Scholar 

  25. Holmes MC, Yau JL, Kotelevtsev Y, Mullins JJ, Seckl JR (2003) 11-beta-hydroxysteroid dehydrogenases in the brain: two enzymes two roles. Ann N Y Acad Sci 1007:357–366

    Article  CAS  PubMed  Google Scholar 

  26. Phillips DI, Walker BR, Reynolds RM, Flanagan DE, Wood PJ, Osmond C, Barker DJ, Whorwood CB (2000) Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension 35:1301–1306

    Article  CAS  PubMed  Google Scholar 

  27. Hales CN, Barker DJ (2013) Type 2 (non insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Int J Epidemiol 42:1215–1222

    Article  CAS  PubMed  Google Scholar 

  28. Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C (2000) Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab 85:1401–1406

    CAS  PubMed  Google Scholar 

  29. Lifshitz F (2008) Obesity in children. J Clin Res Pediatr Endocrinol 1(2):53–60

    Article  PubMed  PubMed Central  Google Scholar 

  30. D’Adamo E, Santoro N, Caprio S (2011) Metabolic syndrome in pediatrics: old concepts revised, new concepts discussed. Pediatr Clin North Am 58(5):1241–1255

    Article  PubMed  Google Scholar 

  31. Jovanovic L (2004) Nutrition and pregnancy: the link between dietary intake and diabetes. Curr Diab Rep 4:266–272

    Article  PubMed  Google Scholar 

  32. Amiel SA, Caprio S, Sherwin RS, Plewe G, Haymond MW, Tamborlane WV (1991) Insulin resistance of puberty: a defect restricted to peripheral glucose metabolism. J Clin Endocrinol Metab 72(2):277–282

    Article  CAS  PubMed  Google Scholar 

  33. Hofman PL, Cutfield WS, Robinson EM, Bergman RN, Menon RK, Sperling MA, Gluckman PD (1997) Insulin resistance in short children with intrauterine growth retardation. J Clin Endocrinol Metab 82(2):402–406

    CAS  PubMed  Google Scholar 

  34. King V, Norman JE, Seckl JR, Drake AJ (2014) Post-weaning diet determines metabolic risk in mice exposed to overnutrition in early life. Reprod Biol Endocrinol 12:73

    Article  PubMed  PubMed Central  Google Scholar 

  35. Moses RG, Luebcke M, Davis WS, Coleman KJ, Tapsell LC, Petocz P, Brand-Miller JC (2006) Effect of a low-glycemic-index diet during pregnancy on obstetric outcomes. Am J Clin Nutr 84:807–812

    CAS  PubMed  Google Scholar 

  36. Walsh JM, McAuliffe FM (2012) Prediction and prevention of the macrosomic fetus. Eur J Obstet Gynecol Reprod Biol 162:125–130

    Article  PubMed  Google Scholar 

  37. Gallou-Kabani C, Vigé A, Gross MS, Boileau C, Rabes JP, Fruchart-Najib J, Jais JP, Junien C (2007) Resistance to high-fat diet in the female progeny of obese mice fed a control diet during the periconceptual, gestation, and lactation periods. Am J Physiol Endocrinol Metab 292(4):E1095–E1100

    Article  CAS  PubMed  Google Scholar 

  38. Gniuli D, Calcagno A, Caristo ME, Mancuso A, Macchi V, Mingrone G, Vettor R (2008) Effects of high-fat diet exposure during fetal life on type 2 diabetes development in the progeny. J Lipid Res 49:1936–1945

    Article  CAS  PubMed  Google Scholar 

  39. Stocker C, O’Dowd J, Morton NM, Wargent E, Sennitt MV, Hislop D, Glund S, Seckl JR, Arch JR, Cawthorne MA (2004) Modulation of susceptibility to weight gain and insulin resistance in low birthweight rats by treatment of their mothers with leptin during pregnancy and lactation. Int J Obes Relat Metab Disord 28:129–136

    Article  CAS  PubMed  Google Scholar 

  40. Cherif H, Reusens B, Ahn MT, Hoet JJ, Remacle C (1998) Effects of taurine on the insulin secretion of rat fetal islets from dams fed a low-protein diet. J Endocrinol 159:341–348

    Article  CAS  PubMed  Google Scholar 

  41. Bonner-Weir S (2000) Islet growth and development in the adult. J Mol Endocrinol 24:297–302

    Article  CAS  PubMed  Google Scholar 

  42. Salehi A, Flodgren E, Nilsson NE, Jimenez-Feltstrom J, Miyazaki J, Owman C, Olde B (2005) Free fatty acid receptor 1 (FFA(1)R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion. Cell Tissue Res 26:1–9

    Google Scholar 

  43. Yokomizo H, Inoguchi T, Sonoda N, Sakaki Y, Maeda Y, Inoue T, Hirata E, Takei R, Ikeda N, Fujii M et al (2014) Maternal high-fat diet induces insulin resistance and deterioration of pancreatic β-cell function in adult offspring with sex differences in mice. Am J Physiol Endocrinol Metab 306(10):E1163–E1175

    Article  CAS  PubMed  Google Scholar 

  44. Agnoux AM, Antignac JP, Simard G, Poupeau G, Darmaun D, Parnet P, Alexandre-Gouabau MC (2014) Time window-dependent effect of perinatal maternal protein restriction on insulin sensitivity and energy substrate oxidation in adult male offspring. Am J Physiol Regul Integr Comp Physiol 307(2):R184–R197

    Article  CAS  PubMed  Google Scholar 

  45. Ozanne SE, Hales CN (2004) Lifespan: catch-up growth and obesity in male mice. Nature 427:411–412

    Article  CAS  PubMed  Google Scholar 

  46. Mascova E, Rytter D, Bech BH, Henriksen TB, Rasmussen MA, Olsen SF, Halldorsson TI (2014) Maternal protein intake during pregnancy and offspring overweight 20 y later. Am J Clin Nutr 100(4):1139–1148

    Article  Google Scholar 

  47. Scribner KB, Pawlak DB, Ludwig DS (2007) Hepatic steatosis and increased adiposity in mice consuming rapidly vs. slowly absorbed carbohydrates. Obesity (Silver Spring) 15:2190–2199

    Article  CAS  Google Scholar 

  48. Jenkins DJ, Kendall CW, McKeown-Eyssen G, Josse RG, Silverberg J, Booth GL, Vidgen E, Josse AR, Nguyen TH, Corrigan S et al (2008) Effect of a low-glycemic index or a high-cereal fiber diet on type 2 diabetes: a randomized trial. JAMA 23:2742–2753

    Article  Google Scholar 

  49. Walsh JM, McGowan CA, Mahony R (2012) Low glycaemic index diet in pregnancy to prevent macrosomia (ROLO study): randomised control trial. BMJ 345:e5605

    Article  PubMed  PubMed Central  Google Scholar 

  50. Walsh JM, Mahony RM, Culliton M, Foley ME, McAuliffe FM (2014) Impact of a low glycemic index diet in pregnancy on markers of maternal and fetal metabolism and inflammation. Reprod Sci 21(11):1378–1381

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tzanetakou IP, Mikhailidis DP, Perrea DN (2011) Nutrition during pregnancy and the effect of carbohydrates on the offspring’s metabolic profile: in search of the “Perfect Maternal Diet”. Open Cardiovasc Med J 5:103–109

    Article  PubMed  PubMed Central  Google Scholar 

  52. Scholl TO, Chen X, Khoo CS, Lenders C (2004) The dietary glycemic index during pregnancy: influence on infant birth weight, fetal growth, and biomarkers of carbohydrate metabolism. Am J Epidemiol 159(5):467–474

    Article  PubMed  Google Scholar 

  53. Reusens B, Ozanne SE, Remacle C (2007) Fetal determinants of type 2 diabetes. Curr Drug Targets 8(8):935–941

    Article  CAS  PubMed  Google Scholar 

  54. Djiane J, Attig L (2008) Role of leptin during perinatal metabolic programming and obesity. J Physiol Pharmacol 59(Suppl 1):55–63

    PubMed  Google Scholar 

  55. Danielsen I, Granström C, Haldorsson T, Rytter D, Hammer Bech B, Henriksen TB, Vaag AA, Olsen SF (2013) Dietary glycemic index during pregnancy is associated with biomarkers of the metabolic syndrome in offspring at age 20 years. PLoS One 8(5):e64887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fall CHD, Yajnik CS, Rao S, Davies AA, Brown N, Farrant HJ (2003) Micronutrients and fetal growth. J Nutr 133(5 Suppl 2):1747S–1756S

    CAS  PubMed  Google Scholar 

  57. Luo ZC, Fraser WD, Julien P, Deal CL, Audibert F, Smith GN, Xiong X, Walker M (2006) Tracing the origins of “fetal origins” of adult diseases: programming by oxidative stress? Med Hypotheses 66:38–44

    Article  CAS  PubMed  Google Scholar 

  58. Lenzen S (2008) Oxidative stress: the vulnerable beta-cell. Biochem Soc Trans 36(Pt 3):343–347

    Article  CAS  PubMed  Google Scholar 

  59. Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S, Fisher DJ, Bhat DS, Naik SS, Coyaji KJ, Joglekar CV et al (2008) Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51(1):29–38

    Article  CAS  PubMed  Google Scholar 

  60. Scott JM, Weir DG (1981) The methyl folate trap. A physiological response in man to prevent methyl group deficiency in kwashiorkor (methionine deficiency) and an explanation for folic-acid induced exacerbation of subacute combined degeneration in pernicious anaemia. Lancet 2(8242):337–340

    Article  CAS  PubMed  Google Scholar 

  61. Ruderman NB, Saha AK, Vavvas D, Witters LA (1999) Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol 276(1 Pt 1):E1–E18

    CAS  PubMed  Google Scholar 

  62. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135(6):1382–1386

    CAS  PubMed  Google Scholar 

  63. Kramer MS, Kakuma R (2012) Optimal duration of exclusive breastfeeding. Cochrane Database Syst Rev 8, CD003517

    PubMed  Google Scholar 

  64. World Health Organization, Global strategy for infant and young child feeding (2001) The optimal duration of exclusive breastfeeding. World Health Organization, Geneva

    Google Scholar 

  65. Veena SR, Krishnaveni GV, Wills AK, Hill JC, Karat SC, Fall CH (2011) Glucose tolerance and insulin resistance in Indian children: relationship to infant feeding pattern. Diabetologia 54(10):2533–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martin MR, Patel R, Kramer MS, Vilchuck K, Bogdanovich N, Sergeichick N, Gusina N, Foo Y, Palmer T, Thompson J et al (2014) Effects of promoting longer-term and exclusive breastfeeding on cardiometabolic risk factors at age 11.5 years: a cluster-randomized, controlled trial. Circulation 129(3):321–329

    Article  CAS  PubMed  Google Scholar 

  67. Mericq V, Ong KK, Bazaes R, Peña V, Avila A, Salazar T, Soto N, Iñiquez G, Dunger DB (2005) Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children. Diabetologia 48:2609–2614

    Article  CAS  PubMed  Google Scholar 

  68. Savino F, Fissore MF, Grassino EC, Nanni GE, Oggero R, Silvestro L (2005) Ghrelin, leptin and IGF-1 levels in breast-fed and formula-fed infants in the first years of life. Acta Paediatr 94(5):531–537

    Article  PubMed  Google Scholar 

  69. Lanigan J, Singhal A (2009) Early nutrition and long-term health: a practical approach. Proc Nutr Soc 68:422–429

    Article  PubMed  Google Scholar 

  70. Rolland-Cachera MF, Deheeger M, Akrout M, Bellisle F (1995) Influence of macronutrients on adiposity development: a follow up study of nutrition and growth from 10 months to 8 years of age. Int J Obes Relat Metab Disord 19(8):573–578

    CAS  PubMed  Google Scholar 

  71. Agostoni C, Scaglioni S, Ghisleni D, Verduci E, Giovannini M, Riva E (2005) How much protein is safe? Int J Obes (Lond) 29(Suppl):S8–S13

    Article  CAS  Google Scholar 

  72. Koletzko B, Broekaert I, Demmelmair H, Franke J, Hannibal I, Oberle D, Schiess S, Baumann BT, Verwied-Jorky S, EU Childhood Obesity Project (2005) Protein intake in the first year of life: a risk factor for later obesity? The EU Childhood Obesity Project. Adv Exp Med Biol 569:69–79

    Article  PubMed  Google Scholar 

  73. Daenzer M, Ortmann S, Klaus S, Metges CC (2002) Prenatal high protein exposure decreases energy expenditure and increases adiposity in young rats. J Nutr 132(2):142–144

    CAS  PubMed  Google Scholar 

  74. Michaelsen KF, Larnkjiaer A, Molgaard C (2012) Amount and quality of dietary proteins during the first two years of life in relation to NCD risk in adulthood. Nutr Metab Cardiovasc Dis 22(10):781–786

    Article  CAS  PubMed  Google Scholar 

  75. Martin FP, Moco S, Montoliu I, Collino S, Da Silva L, Rezzi S, Prieto R, Kussmann M, Inostroza J, Steenhout P (2014) Impact of breast-feeding and high- and low-protein formula on the metabolism and growth of infants from overweight and obese mothers. Pediatr Res 75(4):535–543

    Article  CAS  PubMed  Google Scholar 

  76. Fleish AF, Wright RO, Baccarelli AA (2012) Environmental epigenetics: a role in endocrine disease? J Mol Endocrinol 49(2):R61–R67

    Article  Google Scholar 

  77. Jang H, Serra C (2014) Nutrition, epigenetics, and diseases. Clin Nutr Res 3:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bouret SG, Draper SJ, Simerly RB (2004) Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304:108–110

    Article  CAS  PubMed  Google Scholar 

  79. Sagawa N, Yura S, Itoh H, Kakui K, Takemura M, Nuamah MA, Ogawa Y, Masuzaki H, Nakao K, Fujii S (2002) Possible role of placental leptin in pregnancy: a review. Endocrine 19:65–71

    Article  CAS  PubMed  Google Scholar 

  80. Bispham J, Gopalakrishnan GS, Dandrea J, Wilson V, Budge H, Keisler DH, Broughton Pipkin F, Stephenson T, Symonds ME (2003) Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development. Endocrinology 144:3575–3585

    Article  CAS  PubMed  Google Scholar 

  81. Remesar X, Rafecas I, Fernandez-Lopez JA, Alemany M (1997) Is leptin an insulin counter-regulatory hormone? FEBS Lett 402:9–11

    Article  CAS  PubMed  Google Scholar 

  82. Koebnick C, Roberts CK, Shaibi GQ, Kelly LA, Lane CJ, Toledo-Corral CM, Davis JN, Ventura EE, Alexander K, Weigensberg MJ et al (2008) Adiponectin and leptin are independently associated with insulin sensitivity, but not with insulin secretion or beta cell function in overweight Hispanic adolescents. Horm Metab Res 40(10):708–712

    Article  CAS  PubMed  Google Scholar 

  83. Seufert J, Kieffer TJ, Leech CA, Holz GG, Moritz W, Ricordi C, Habener JF (1999) Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 84(2):670–676

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Vyncke K, Cruz-Fernandez E, Fajó-Pascual M, Cuenca-García M, De Keyzer W, Gonzalez-Gross M, Moreno LA, Beghin L, Breidenassel C, Kersting M et al (2013) Validation of the Diet Quality Index for Adolescents by comparison with biomarkers, nutrient and food intakes: the HELENA study. Br J Nutr 109(11):2067–2078

    Article  CAS  PubMed  Google Scholar 

  85. Cooke L (2007) The importance of exposure for healthy eating in childhood: a review. J Hum Nutr Diet 20(4):294–301

    Article  CAS  PubMed  Google Scholar 

  86. Scaglioni S, Arrizza C, Vecchi F, Tedeschi S (2011) Determinants of children’s eating behavior. Am J Clin Nutr 94(Suppl 6):2006S–2011S

    Article  CAS  PubMed  Google Scholar 

  87. Warren JM, Henry CJK, Simonite V (2003) Low glycemic index breakfasts and reduced food intake in preadolescent children. Pediatrics 112(5):e414

    Article  PubMed  Google Scholar 

  88. Bazzano LA, Song Y, Bubes V, Good CK, Manson JE, Liu S (2005) Dietary intake of whole and refined grain breakfast cereals and weight gain in men. Obes Res 13(11):1952–1960

    Article  PubMed  Google Scholar 

  89. Song WO, Chun OK, Obayashi S, Cho S, Chung CE (2005) Is consumption of breakfast associated with body mass index in US adults? J Am Diet Assoc 105(9):1373–1382

    Article  PubMed  Google Scholar 

  90. Mekary RA, Giovannucci E, Cahill L, Willet WC, van Dam RM, Hu FB (2013) Eating patterns and type 2 diabetes risk in older women: breakfast consumption and eating frequency. Am J Clin Nutr 98(2):436–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mekary RA, Giovannucci E, Willett WC, van Dam RM, Hu FB (2012) Eating patterns and type 2 diabetes risk in men: breakfast omission, eating frequency, and snacking. Am J Clin Nutr 95(5):1182–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Szajewska H, Ruszczynski M (2010) Systematic review demonstrating that breakfast consumption influences body weight outcomes in children and adolescents in Europe. Crit Rev Food Sci Nutr 50(2):113–119

    Article  PubMed  Google Scholar 

  93. Donin AS, Nightingale CM, Owen CG, Rudnicka AR, Perkin MR, Jebb SA, Stephen AM, Sattar N, Cook DG, Whincup PH (2014) Regular breakfast consumption and type 2 diabetes risk markers in 9- to 10-year-old children in the child heart and health study in England (CHASE): a cross-sectional analysis. PLoS Med 11(9):e1001703

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cuenca-García M, Ruiz JR, Ortega FB, Labayen I, González-Gross M, Moreno LA, Gomez-Martinez S, Ciarapica D, Hallström L, Wästlund A et al (2014) Association of breakfast consumption with objectively measured and self-reported physical activity, sedentary time and physical fitness in European adolescents: the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr 17(10):2226–2236

    Article  PubMed  Google Scholar 

  95. Canete R, Gil-Campos M, Aquilera CM, Gil A (2007) Development of insulin resistance and its relation to diet in the obese child. Eur J Nutr 46(4):181–187

    Article  CAS  PubMed  Google Scholar 

  96. Pérez-Jiménez F, López-Miranda J, Pinillos MD, Gómez P, Paz-Rojas E, Montilla P, Marín C, Velasco MJ, Blanco-Molina A, Jiménez-Perepérez JA et al (2001) A Mediterranean and a high-carbohydrate diet improve glucose metabolism in healthy young persons. Diabetologia 44(11):2038–2043

    Article  PubMed  Google Scholar 

  97. Velázquez-López L, Santiago-Díaz G, Nava-Hernández J, Muñoz-Torres AV, Medina-Bravo P, Torres-Tamayo M (2014) Mediterranean-style diet reduces metabolic syndrome components in obese children and adolescents with obesity. BMC Pediatr 14:175

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kondaki K, Grammatikaki E, Jiménez-Pavón D, De Henauw S, González-Gross M, Sjöström M, Gottrand F, Molnar D, Moreno LA, Kafatos A et al (2013) Daily sugar-sweetened beverage consumption and insulin resistance in European adolescents: the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr 16(3):479–486

    Article  PubMed  Google Scholar 

  99. Wang J (2014) Consumption of added sugars and development of metabolic syndrome components among a sample of youth at risk of obesity. Appl Physiol Nutr Metab 39(4):512

    Article  CAS  Google Scholar 

  100. WHO Prevention of Noncommunicable Diseases (PND). WHO, population-based approaches to childhood obesity prevention 2009. Available at: http://www.who.int/dietphysicalactivity/childhood/en/

  101. Davis JN, Ventura EE, Weigensberg MJ, Ball GD, Cruz ML, Shaibi GQ, Goran MI (2005) The relation of sugar intake to beta cell function in overweight Latino children. Am J Clin Nutr 82(5):1004–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Steffen LM, Jacobs DR Jr, Murtaugh MA, Moran A, Steinberg J, Hong CP, Sinaiko AR (2003) Whole grain intake is associated with lower body mass and greater insulin sensitivity among adolescents. Am J Epidemiol 158(3):243–250

    Article  PubMed  Google Scholar 

  103. Cook LT, O’Reilly GA, Goran MI, Weigensberg MJ, Spruijt-Metz D, Davis JN (2014) Vegetable consumption is linked to decreased visceral and liver fat and improved insulin resistance in overweight Latino youth. J Acad Nutr Diet 114(11):1776–1783

    Article  PubMed  PubMed Central  Google Scholar 

  104. Stang J, Story M (eds) (2005) Guidelines for adolescent nutrition services. Center for Leadership, Education and Training in Maternal and Child Nutrition, Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Chiarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Franchini, S., Blasetti, A., Chiarelli, F. (2017). Nutrition and Insulin Resistance During Childhood and Adolescence. In: Scaramuzza, A., de Beaufort, C., Hanas, R. (eds) Research into Childhood-Onset Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-319-40242-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40242-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40240-6

  • Online ISBN: 978-3-319-40242-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics