Skip to main content

Physiochemical Methods for Detection of Occupational Contact Allergens

  • Living reference work entry
  • First Online:
Kanerva’s Occupational Dermatology

Abstract

To diagnose and prevent allergic contact dermatitis the demonstration of allergens in products from the patient’s environment is important. Chemical analysis of a product can make it possible to demonstrate the presence or absence of known allergens.

There are simple spot tests that can be used to qualitatively demonstrate the presence of some of the most common contact allergens such as nickel ions, hexavalent chromium ions, cobalt ions, and formaldehyde.

For most substances more advanced chemical methods are needed. Such methods often consist of a chromatographic separation system and a detection system. Examples of separation techniques are thin-layer chromatography, high-performance liquid chromatography, and gas chromatography, while detection and quantification of substances can be done using e.g., UV-VIS spectrophotometry, mass spectrometry, and atomic absorption spectrophotometry.

Methods such as mass spectrometry, nuclear magnetic resonance spectroscopy, and infrared spectrophotometry are often required to identify isolated allergens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen KE, Nielsen GD, Flyvholm MA et al (1983) Nickel in tap water. Contact Dermatitis 9(2):140–143

    Article  CAS  PubMed  Google Scholar 

  • Antelmi A, Bruze M, Zimerson E, Engfeldt M, Young E, Persson L, Foti C, Sörensen Ö, Svedman C (2017) Evaluation of concordance between labelling and content of 52 hair dye products: overview of the market of oxidative hair dye. Eur J Dermatol 27(2):123–131. https://doi.org/10.1684/ejd.2016.2934

    PubMed  Google Scholar 

  • Arisu K, Hayakawa R, Ogino Y et al (1992) Tinuvin P in a spandex tape as a cause of clothing dermatitis. Contact Dermatitis 26(5):311–316

    Article  CAS  PubMed  Google Scholar 

  • Avenel-Audran M, Goossens A, Zimerson E et al (2003) Contact dermatitis from electrocardiograph-monitoring electrodes: role of p-tert-butylphenol-formaldehyde resin. Contact Dermatitis 48(2):108–111

    Article  CAS  PubMed  Google Scholar 

  • Bergendorff O, Hansson C (2001) Stability of thiuram disulfides in patch test preparations and formation of asymmetric disulfides. Contact Dermatitis 45(3):151–157

    Article  CAS  PubMed  Google Scholar 

  • Bergendorff O, Ezzelarab M, Wallengren J (1994) Airborne contact dermatitis from formaldehyde released from heated plastic polymers. Am J Contact Dermat 5:223–225

    Google Scholar 

  • Bergendorff O, Persson CM, Hansson C (2004) HPLC analysis of alkyl thioureas in an orthopaedic brace and patch testing with pure ethylbutylthiourea. Contact Dermatitis 51(5–6):273–277

    Article  CAS  PubMed  Google Scholar 

  • Bergendorff O, Persson C, Hansson C (2006) High-performance liquid chromatography analysis of rubber allergens in protective gloves used in health care. Contact Dermatitis 55(4):210–215

    Article  CAS  PubMed  Google Scholar 

  • Bergh M, Menne T, Karlberg AT (1994) Colophony in paper-based surgical clothing. Contact Dermatitis 31(5):332–333

    Article  CAS  PubMed  Google Scholar 

  • Björkner B, Niklasson B (1997) Contact allergy to the UV absorber Tinuvin P in a dental restorative material. Am J Contact Dermat 8(1):6–7

    PubMed  Google Scholar 

  • Blom G (1959) Formaldehyde contact dermatitis. Acta Derm Venereol 39:450–453

    Google Scholar 

  • Bruze M, Fregert S (1983a) Allergic contact dermatitis from ethylene thiourea. Contact Dermatitis 9(3):208–212

    Article  CAS  PubMed  Google Scholar 

  • Bruze M, Fregert S (1983b) Studies on purity and stability of photopatch test substances. Contact Dermatitis 9(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Bruze M, Gruvberger B (1985) Contact allergy to photoproducts of musk ambrette. Photo-Dermatology 2(5):310–314

    CAS  PubMed  Google Scholar 

  • Bruze M, Fregert S, Gruvberger B (1984) Occurrence of para-aminobenzoic acid and benzocaine as contaminants in sunscreen agents of para-aminobenzoic acid type. Photo-Dermatology 1(6):277–285

    CAS  PubMed  Google Scholar 

  • Bruze M, Edman B, Niklasson B et al (1985) Thin layer chromatography and high pressure liquid chromatography of musk ambrette and other nitromusk compounds including photopatch studies. Photo-Dermatology 2(5):295–302

    CAS  PubMed  Google Scholar 

  • Bruze M, Persson L, Trulsson L et al (1986) Demonstration of contact sensitizers in resins and products based on phenol-formaldehyde. Contact Dermatitis 14(3):146–154

    Article  CAS  PubMed  Google Scholar 

  • Bruze M, Gruvberger B, Thulin I (1990) PABA, benzocaine, and other PABA esters in sunscreens and after-sun products. Photodermatol Photoimmunol Photomed 7(3):106–108

    CAS  PubMed  Google Scholar 

  • Bruze M, Frick M, Persson L (2003) Patch testing with thin-layer chromatograms. Contact Dermatitis 48(5):278–279

    Article  CAS  PubMed  Google Scholar 

  • Bruze M, Gruvberger B, Fregert S (2006) Chemical skin burns. In: Chew A, Maibach HI, Lepoittevin JP (eds) Irritant dermatitis. Springer, Berlin, pp 53–61

    Chapter  Google Scholar 

  • Dahlin J, Bergendorff O, Vindenes HK, Hindsén M, Svedman C (2014) Triphenylguanidine, a new (old?) rubber accelerator detected in surgical gloves that may cause allergic contact dermatitis. Contact Dermatitis 71(4):242–246. https://doi.org/10.1111/cod.12276

    Article  CAS  PubMed  Google Scholar 

  • Dahlquist I, Fregert S, Gruvberger B (1980) Reliability of the chromotropic acid method for qualitative formaldehyde determination. Contact Dermatitis 6(5):357–358

    Article  CAS  PubMed  Google Scholar 

  • Depree GJ, Bledsoe TA, Siegel PD (2005) Survey of sulfur-containing rubber accelerator levels in latex and nitrile exam gloves. Contact Dermatitis 53(2):107–113

    Article  CAS  PubMed  Google Scholar 

  • Dooms-Goossens A, Bruze M, Buysse L et al (1995) Contact allergy to allyl glycidyl ether present as an impurity in 3-glycidyloxypropyltrimethoxysilane, a fixing additive in silicone and polyurethane resins. Contact Dermatitis 33(1):17–19

    Article  CAS  PubMed  Google Scholar 

  • Ehrin E, Karlberg AT (1990) Detection of rosin (colophony) components in technical products using an HPLC technique. Contact Dermatitis 23(5):359–366

    Article  CAS  PubMed  Google Scholar 

  • European Committee for Standardisation (CEN) (1998) Reference test method for release of nickel from products intended to come into direct and prolonged contact with the skin, EN 1811

    Google Scholar 

  • European Committee for Standardisation (CEN) (2002) Screening tests for nickel release from alloys and coatings in items that come in direct and prolonged contact with the skin, CR: 12471

    Google Scholar 

  • Febriana SA, Zimerson E, Svedman C, Haryadi W, Coenraads PJ, Schuttelaar ML (2015) Thin-layer chromatography and gas chromatography-mass spectrometry examination of shoe materials from patients with shoe dermatitis. Contact Dermatitis 72(4):248–252. https://doi.org/10.1111/cod.12342

    Article  CAS  PubMed  Google Scholar 

  • Feigl F, Anger V (1966) Spot tests in organic analysis. Elsevier, Amsterdam

    Google Scholar 

  • Feigl F, Anger V (1972) Spot tests in inorganic analysis. Elsevier, Amsterdam

    Google Scholar 

  • Fischer T, Fregert S, Gruvberger B et al (1984) Contact sensitivity to nickel in white gold. Contact Dermatitis 10(1):23–24

    Article  CAS  PubMed  Google Scholar 

  • Foti C, Romita P, Rigano L, Zimerson E, Sicilia M, Ballini A, Ghizzoni O, Antelmi A, Angelini G, Bonamonte D, Bruze M (2016) Isobornyl acrylate: an impurity in alkyl glucosides. Cutan Ocul Toxicol 35(2):115–119. https://doi.org/10.3109/15569527.2015.1055495

    CAS  PubMed  Google Scholar 

  • Fregert S, Gruvberger B (1972) Chemical properties of cement. Berufsdermatosen 20(5):238–248

    CAS  PubMed  Google Scholar 

  • Fregert S, Trulsson L (1978) Simple methods for demonstration of epoxy resins of bisphenol a type. Contact Dermatitis 4(2):69–72

    Article  CAS  PubMed  Google Scholar 

  • Fregert S, Trulson L, Zimerson E (1982) Contact allergic reactions to diphenylthiourea and phenylisothiocyanate in PVC adhesive tape. Contact Dermatitis 8(1):38–42

    Article  CAS  PubMed  Google Scholar 

  • Fregert S, Dahlquist I, Gruvberger B (1984a) A simple method for the detection of formaldehyde. Contact Dermatitis 10(3):132–134

    Article  CAS  PubMed  Google Scholar 

  • Fregert S, Meding B, Trulsson L (1984b) Demonstration of epoxy resin in stoma pouch plastic. Contact Dermatitis 10(2):106

    Article  CAS  PubMed  Google Scholar 

  • Frick M, Zimerson E, Karlsson D et al (2004) Poor correlation between stated and found concentrations of diphenylmethane-4,4′-diisocyanate (4,4′-MDI) in petrolatum patch-test preparations. Contact Dermatitis 51(2):73–78

    Article  CAS  PubMed  Google Scholar 

  • Frick-Engfeldt M, Zimerson E, Karlsson D et al (2005) Chemical analysis of 2,4-toluene diisocyanate, 1,6-hexamethylene diisocyanate and isophorone diisocyanate in petrolatum patch-test preparations. Dermatitis 16(3):130–135

    PubMed  Google Scholar 

  • Garcia-Hidalgo E, Sottas V, von Goetz N, Hauri U, Bogdal C, Hungerbühler K (2017) Occurrence and concentrations of isothiazolinones in detergents and cosmetics in Switzerland. Contact Dermatitis 76(2):96–106. https://doi.org/10.1111/cod.12700. Erratum in: Contact Dermatitis. 2017 May; 76(5):324.

    Article  CAS  PubMed  Google Scholar 

  • Gimenez-Arnau A, Gimenez-Arnau E, Serra-Baldrich E et al (2002) Principles and methodology for identification of fragrance allergens in consumer products. Contact Dermatitis 47(6):345–352

    Article  CAS  PubMed  Google Scholar 

  • Goon AT, Bruze M, Zimerson E, Sörensen O, Goh CL, Koh DS, Isaksson M (2011) Correlation between stated and measured concentrations of acrylate and methacrylate allergens in patch-test preparations. Dermatitis 22(1):27–32

    CAS  PubMed  Google Scholar 

  • Gruvberger B, Persson K, Bjorkner B et al (1986) Demonstration of Kathon CG in some commercial products. Contact Dermatitis 15(1):24–27

    Article  CAS  PubMed  Google Scholar 

  • Gruvberger B, Bruze M, Tammela M (1998) Preservatives in moisturizers on the Swedish market. Acta Derm Venereol 78(1):52–56

    Article  CAS  PubMed  Google Scholar 

  • Gryllaki-Berger M, Mugny C, Perrenoud D et al (1992) A comparative study of formaldehyde detection using chromotropic acid, acetylacetone and HPLC in cosmetics and household cleaning products. Contact Dermatitis 26(3):149–154

    Article  CAS  PubMed  Google Scholar 

  • Hamann CR, Zimerson E, Hamann D, Laugesen L, Carlsson B, Nathansen C, Hamann C, Bruze M (2012) Concentration variability of potent allergens of p-tert-butylphenol-formaldehyde resin (PTBP-FR) in patch test preparations and commercially available PTBP-FR. Br J Dermatol 166(4):761–770. https://doi.org/10.1111/j.1365-2133.2011.10781.x

    Article  CAS  PubMed  Google Scholar 

  • Hamann D, Hamann CR, Zimerson E, Bruze M (2013) Hydroxyisohexyl 3-cyclohexene carboxaldehyde (lyral) in patch test preparations under varied storage conditions. Dermatitis 24(5):246–248. https://doi.org/10.1097/DER.0b013e318281d094

    Article  CAS  PubMed  Google Scholar 

  • Hansen MB, Menne T, Johansen JD (2006) Cr(III) and Cr(VI) in leather and elicitation of eczema. Contact Dermatitis 54(5):278–282

    Article  CAS  PubMed  Google Scholar 

  • Hansson C (1994) Determination of monomers in epoxy resin hardened at elevated temperature. Contact Dermatitis 31(5):333–334

    Article  CAS  PubMed  Google Scholar 

  • Hansson C, Bergendorff O, Ezzelarab M et al (1997) Extraction of mercaptobenzothiazole compounds from rubber products. Contact Dermatitis 36(4):195–200

    Article  CAS  PubMed  Google Scholar 

  • Henriks-Eckerman M-L, Kanerva L (1997) Gas chromatographic and mass spectrometric purity analysis of acrylates and methacrylates used as patch test substances. Am J Contact Dermat 8:20–23

    Article  CAS  PubMed  Google Scholar 

  • Herman A, Aerts O, Baeck M, Bruze M, De Block C, Goossens A, Hamnerius N, Huygens S, Maiter D, Tennstedt D, Vandeleene B, Mowitz M (2017) Allergic contact dermatitis caused by isobornyl acrylate in freestyle® libre, a newly introduced glucose sensor. Contact Dermatitis 77(6):367–373. https://doi.org/10.1111/cod.12866

    Article  CAS  PubMed  Google Scholar 

  • Ingber A, Gammelgaard B, David M (1998) Detergents and bleaches are sources of chromium contact dermatitis in Israel. Contact Dermatitis 38(2):101–104

    Article  CAS  PubMed  Google Scholar 

  • Isaksson M, Gruvberger B, Persson L et al (2000) Stability of corticosteroid patch test preparations. Contact Dermatitis 42(3):144–148

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson HA, Burrows D (1987) Pitfalls in the demonstration of epoxy resins. Contact Dermatitis 16(4):226–227

    Article  CAS  PubMed  Google Scholar 

  • Julander A, Hindsen M, Skare L et al (2009) Cobalt-containing alloys and their ability to release cobalt and cause dermatitis. Contact Dermatitis 60(3):165–170

    Article  CAS  PubMed  Google Scholar 

  • Kaniwa MA, Momma J, Ikarashi Y et al (1992) A method for identifying causative chemicals of allergic contact dermatitis using a combination of chemical analysis and patch testing in patients and animal groups: application to a case of rubber boot dermatitis. Contact Dermatitis 27(3):166–173

    Article  CAS  PubMed  Google Scholar 

  • Kaniwa M, Isama K, Nakamura A et al (1994a) Identification of causative chemicals of allergic contact dermatitis using a combination of patch testing in patients and chemical analysis. Application to cases from rubber gloves. Contact Dermatitis 31(2):65–71

    Article  CAS  PubMed  Google Scholar 

  • Kaniwa MA, Isama K, Nakamura A et al (1994b) Identification of causative chemicals of allergic contact dermatitis using a combination of patch testing in patients and chemical analysis. Application to cases from industrial rubber products. Contact Dermatitis 30(1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Kaniwa MA, Isama K, Nakamura A et al (1994c) Identification of causative chemicals of allergic contact dermatitis using a combination of patch testing in patients and chemical analysis. Application to cases from rubber footwear. Contact Dermatitis 30(1):26–34

    Article  CAS  PubMed  Google Scholar 

  • Karlberg AT, Dooms-Goossens A (1997) Contact allergy to oxidized d-limonene among dermatitis patients. Contact Dermatitis 36(4):201–206

    Article  CAS  PubMed  Google Scholar 

  • Karlberg AT, Magnusson K (1996) Rosin components identified in diapers. Contact Dermatitis 34(3):176–180

    Article  CAS  PubMed  Google Scholar 

  • Karlberg AT, Magnusson K, Nilsson U (1992) Air oxidation of D-limonene (the citrus solvent) creates potent allergens. Contact Dermatitis 26(5):332–340

    Article  CAS  PubMed  Google Scholar 

  • Karlberg AT, Gafvert E, Liden C (1995) Environmentally friendly paper may increase risk of hand eczema in rosin-sensitive persons. J Am Acad Dermatol 33(3):427–432

    Article  CAS  PubMed  Google Scholar 

  • Karlberg AT, Gafvert E, Meding B et al (1996) Airborne contact dermatitis from unexpected exposure to rosin (colophony). Rosin sources revealed with chemical analyses. Contact Dermatitis 35(5):272–278

    Article  CAS  PubMed  Google Scholar 

  • Karlberg AT, Skare L, Lindberg I et al (1998) A method for quantification of formaldehyde in the presence of formaldehyde donors in skin-care products. Contact Dermatitis 38(1):20–28

    Article  CAS  PubMed  Google Scholar 

  • Kerre S, Devos L, Verhoeve L et al (1996) Contact allergy to diethylthiourea in a wet suit. Contact Dermatitis 35(3):176–178

    Article  CAS  PubMed  Google Scholar 

  • Kroona L, Warfvinge G, Isaksson M, Ahlgren C, Dahlin J, Sörensen Ö, Bruze M (2017) Quantification of l-carvone in toothpastes available on the Swedish market. Contact Dermatitis 77(4):224–230. https://doi.org/10.1111/cod.12803

    Article  CAS  PubMed  Google Scholar 

  • Lachapelle JM, Lauwerys R, Tennstedt D et al (1980) Eau de Javel and prevention of chromate allergy in France. Contact Dermatitis 6(2):107–110

    Article  CAS  PubMed  Google Scholar 

  • Lammintausta K, Zimerson E, Hasan T et al (2010) An epidemic of furniture-related dermatitis: searching for a cause. Br J Dermatol 162(1):108–116

    Article  CAS  PubMed  Google Scholar 

  • Le Coz CJ, Coninx D, Van Rengen A et al (1999) An epidemic of occupational contact dermatitis from an immersion oil for microscopy in laboratory personnel. Contact Dermatitis 40(2):77–83

    Article  PubMed  Google Scholar 

  • Liden C, Johnsson S (2001) Nickel on the Swedish market before the nickel directive. Contact Dermatitis 44(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Liden C, Rondell E, Skare L et al (1998) Nickel release from tools on the Swedish market. Contact Dermatitis 39(3):127–131

    Article  CAS  PubMed  Google Scholar 

  • Lind ML, Boman A, Surakka J et al (2004) A method for assessing occupational dermal exposure to permanent hair dyes. Ann Occup Hyg 48(6):533–539

    CAS  PubMed  Google Scholar 

  • Malinauskiene L, Zimerson E, Bruze M, Ryberg K, Isaksson M (2012) Are allergenic disperse dyes used for dyeing textiles? Contact Dermatitis 67(3):141–148. https://doi.org/10.1111/j.1600-0536.2012.02129.x

    Article  CAS  PubMed  Google Scholar 

  • Meding B, Baum H, Bruze M et al (1990) Allergic contact dermatitis from diphenylthiourea in Vulkan heat retainers. Contact Dermatitis 22(1):8–12

    Article  CAS  PubMed  Google Scholar 

  • Mowitz M, Zimerson E, Svedman C, Bruze M (2012) Stability of fragrance patch test preparations applied in test chambers. Br J Dermatol 167(4):822–827. https://doi.org/10.1111/j.1365-2133.2012.11143.x

    Article  CAS  PubMed  Google Scholar 

  • Niklasson B, Bjorkner B (1989) Contact allergy to the UV-absorber Tinuvin P in plastics. Contact Dermatitis 21(5):330–334

    Article  CAS  PubMed  Google Scholar 

  • Nygren O, Wahlberg JE (1998) Speciation of chromium in tanned leather gloves and relapse of chromium allergy from tanned leather samples. Analyst 123(5):935–937

    Article  CAS  PubMed  Google Scholar 

  • Oxholm A, Heidenheim M, Larsen E (1990) Extraction and patch testing of methylcinnamate, a newly recognized fraction of balsam of peru. Am J Contact Dermat 1:43–46

    Article  Google Scholar 

  • Paulsen E, Christensen LP, Hindsén M, Andersen KE (2013) Contact sensitization to calocephalin, a sesquiterpene lactone of the guaianolide type from cushion bush (Leucophyta brownii, Compositae). Contact Dermatitis 69(5):303–310. https://doi.org/10.1111/cod.12096

    CAS  PubMed  Google Scholar 

  • Paulsen E, Hyldgaard MG, Andersen KE, Andersen F, Christensen LP (2017) Allergenic sesquiterpene lactones from cushion bush (Leucophyta brownii Cass.): new and old sensitizers in a shrub-turned-a-pot plant. Contact Dermatitis 76(5):280–286. https://doi.org/10.1111/cod.12757

    Article  CAS  PubMed  Google Scholar 

  • Pedersen NB, Fregert S, Brodelius P et al (1974) Release of nickel from silver coins. Acta Derm Venereol 54(3):231–234

    CAS  PubMed  Google Scholar 

  • Peeters C, Herman A, Goossens A, Bruze M, Mowitz M, Baeck M (2017) Allergic contact dermatitis caused by 2-ethyl cyanoacrylate contained in glucose sensor sets in two diabetic adults. Contact Dermatitis 77(6):426–429. https://doi.org/10.1111/cod.12873. PubMed PMID: 29164694

    Article  PubMed  Google Scholar 

  • Ponten A, Zimerson E, Sorensen O et al (2004) Chemical analysis of monomers in epoxy resins based on bisphenols F and A. Contact Dermatitis 50(5):289–297

    Article  CAS  PubMed  Google Scholar 

  • Pontén A, Hamnerius N, Bruze M, Hansson C, Persson C, Svedman C, Thörneby Andersson K, Bergendorff O (2013) Occupational allergic contact dermatitis caused by sterile non-latex protective gloves: clinical investigation and chemical analyses. Contact Dermatitis 68(2):103–110. https://doi.org/10.1111/cod.12010

    Article  PubMed  CAS  Google Scholar 

  • Raison-Peyron N, Bergendorff O, Bourrain JL, Bruze M (2016) Acetophenone azine: a new allergen responsible for severe contact dermatitis from shin pads. Contact Dermatitis 75(2):106–110. https://doi.org/10.1111/cod.12579

    Article  CAS  PubMed  Google Scholar 

  • Ramzy AG, Hagvall L, Pei MN, Samuelsson K, Nilsson U (2015) Investigation of diethylthiourea and ethyl isothiocyanate as potent skin allergens in chloroprene rubber. Contact Dermatitis 72(3):139–146. https://doi.org/10.1111/cod.12318

    Article  CAS  PubMed  Google Scholar 

  • Rastogi SC (1990) Kathon CG and cosmetic products. Contact Dermatitis 22(3):155–160

    Article  CAS  PubMed  Google Scholar 

  • Rastogi SC (1995) Analysis of fragrances in cosmetics by gas chromatography- mass spectrometry. J High Resolut Chromatogr 18:653–658

    Article  CAS  Google Scholar 

  • Rastogi SC, Johansen SS (1995) Comparison of high-performance liquid chromatographic methods for the determination of 1,2-dibromo-2,4-dicyanobutane in cosmetic products. J Chromatogr A 692:53–57

    Article  CAS  Google Scholar 

  • Rastogi SC, Schouten A, de Kruijf N et al (1995) Contents of methyl-, ethyl-, propyl-, butyl- and benzylparaben in cosmetic products. Contact Dermatitis 32(1):28–30

    Article  CAS  PubMed  Google Scholar 

  • Rastogi SC, Johansen JD, Menne T (1996) Natural ingredients based cosmetics. Content of selected fragrance sensitizers. Contact Dermatitis 34(6):423–426

    Article  CAS  PubMed  Google Scholar 

  • Rastogi SC, Johansen JD, Frosch P et al (1998a) Deodorants on the European market: quantitative chemical analysis of 21 fragrances. Contact Dermatitis 38(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Rastogi SC, Lepoittevin JP, Johansen JD et al (1998b) Fragrances and other materials in deodorants: search for potentially sensitizing molecules using combined GC-MS and structure activity relationship (SAR) analysis. Contact Dermatitis 39(6):293–303

    Article  CAS  PubMed  Google Scholar 

  • Rastogi SC, Zachariae C, Johansen JD et al (2004) Determination of methyldibromoglutaronitrile in cosmetic products by high-performance liquid chromatography with electrochemical detection. Method Validat J Chromatogr A 1031(26):315–317

    Article  CAS  Google Scholar 

  • Rietschel RL, Fowler JF (eds) (2008) Fisher’s contact dermatitis, 6th edn. BC Decker, Ontario, p 677

    Google Scholar 

  • Ryberg K, Gruvberger B, Zimerson E et al (2008) Chemical investigations of disperse dyes in patch test preparations. Contact Dermatitis 58(4):199–209

    Article  CAS  PubMed  Google Scholar 

  • Sadhra S, Gray CN, Foulds IS (1997) High-performance liquid chromatography of unmodified rosin and its applications in contact dermatology. J Chromatogr B Biomed Sci Appl 700(1–2):101–110

    Article  CAS  PubMed  Google Scholar 

  • Schuttelaar ML, Meijer JM, Engfeldt M, Lapeere H, Goossens A, Bruze M, Persson C, Bergendorff O (2018) Allergic contact dermatitis caused by dimethylthiocarbamylbenzothiazole sulfide (DMTBS) in canvas shoes: in search of the culprit allergen. Contact Dermatitis 78(1):7–11. https://doi.org/10.1111/cod.12857

    Article  CAS  PubMed  Google Scholar 

  • Second Commission Directive 82/434/EEC, Annex IV, Identification and determination of free formaldehyde

    Google Scholar 

  • Sheretz EF (1992) Clothing dermatitis: practical aspects for the clinician. Am J Contact Dermat 3:55–64

    Article  Google Scholar 

  • Shouten A, Vermeulen M (1994) The determination of dimethyloldimethylhydantoin (DMDMH) in cosmetic products. TNO Nutr Food Res Rep V 94:608

    Google Scholar 

  • Sottofattori E, Anzaldi M, Balbi A et al (1998) Simultaneous HPLC determination of multiple components in a commercial cosmetic cream. J Pharm Biomed Anal 18(1–2):213–217

    Article  CAS  PubMed  Google Scholar 

  • Stonecipher MR, Sheretz EF (1993) Office detection of formaldehyde in fabric: assessment of methods and update on frequency. Am J Contact Dermat 4:172–174

    Article  Google Scholar 

  • Summer B, Fink U, Zeller R et al (2007) Patch test reactivity to a cobalt-chromium-molybdenum alloy and stainless steel in metal-allergic patients in correlation to the metal ion release. Contact Dermatitis 57(1):35–39

    Article  CAS  PubMed  Google Scholar 

  • Suuronen K, Pesonen M, Henriks-Eckerman ML, Aalto-Korte K (2013) Triphenyl phosphite, a new allergen in polyvinylchloride gloves. Contact Dermatitis 68(1):42–49. https://doi.org/10.1111/j.1600-0536.2012.02159.x

    Article  CAS  PubMed  Google Scholar 

  • Svedman C, Gruvberger B, Dahlin J, Persson L, Möller H, Bruze M (2013) Evaluation of a method for detecting metal release from gold; cysteine enhances release. Acta Derm Venereol 93(5):577–578. https://doi.org/10.2340/00015555-1541

    Article  PubMed  CAS  Google Scholar 

  • Tandon R, Aarts B (1993) Chromium, nickel and cobalt contents of some Australian cements. Contact Dermatitis 28(4):201–205

    Article  CAS  PubMed  Google Scholar 

  • Thyssen JP, Menné T, Johansen JD, Lidén C, Julander A, Møller P, Jellesen MS (2010) A spot test for detection of cobalt release – early experience and findings. Contact Dermatitis 63(2):63–69. https://doi.org/10.1111/j.1600-0536.2010.01749.x

    Article  CAS  PubMed  Google Scholar 

  • Uter W, Hildebrandt S, Geier J et al (2007) Current patch test results in consecutive patients with, and chemical analysis of, disperse blue (DB) 106, DB 124, and the mix of DB 106 and 124. Contact Dermatitis 57(4):230–234

    Article  CAS  PubMed  Google Scholar 

  • Villa C, Gambaro R, Mariani E et al (2007) High-performance liquid chromatographic method for the simultaneous determination of 24 fragrance allergens to study scented products. J Pharm Biomed Anal 44(3):755–762

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Provan GJ, Helliwell K (2002) Determination of bronopol and its degradation products by HPLC. J Pharm Biomed Anal 29(1–2):387–392

    Article  CAS  PubMed  Google Scholar 

  • Wass U, Wahlberg JE (1991) Chromated steel and contact allergy. Recommendation concerning a “threshold limit value” for the release of hexavalent chromium. Contact Dermatitis 24(2):114–118

    Article  CAS  PubMed  Google Scholar 

  • Williams RO III, Mahaguna V, Sriwongjanya M (1997) Determination of diazolidinyl urea in a topical cream by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 696(2):303–306

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Bruze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Engfeldt, M., Gruvberger, B., Bruze, M. (2018). Physiochemical Methods for Detection of Occupational Contact Allergens. In: John, S., Johansen, J., Rustemeyer, T., Elsner, P., Maibach, H. (eds) Kanerva’s Occupational Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-40221-5_86-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40221-5_86-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40221-5

  • Online ISBN: 978-3-319-40221-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics