Skip to main content

HLA System and Giant Cell Arteritis

  • Chapter
  • First Online:
Systemic Vasculitides: Current Status and Perspectives

Abstract

Giant cell arteritis (GCA) is a complex condition in which many loci across the genome may be involved in its susceptibility and phenotypic expression. However, recent large-scale genetic data has shown that the HLA system exerts most of the genetic influence to disease risk, particularly class II genes. This is in contrast with that observed in Takayasu arteritis, the other large vessel vasculitis, in which the HLA association is mainly driven by class I haplotypes. The use of novel imputation methods has made possible an analysis of the HLA system at the amino acid level in GCA. In this context, three polymorphic amino acid positions (positions 13 and 56 of the class II molecules HLA-DRβ1 and HLA-DQα-1, respectively, and position 45 of the class I molecule HLA-B) have been proposed as the causative variants for the HLA association with this type of vasculitis. Although functional experiments may be carried out to confirm these findings, the current data clearly reinforces the idea of GCA as an antigen-driven disease with a major role of T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ly KH, Regent A, Tamby MC, Mouthon L (2010) Pathogenesis of giant cell arteritis: more than just an inflammatory condition? Autoimmun Rev 9:635–645

    Article  CAS  PubMed  Google Scholar 

  2. Weyand CM, Goronzy JJ (2013) Immune mechanisms in medium and large-vessel vasculitis. Nat Rev Rheumatol 9:731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Terrier B, Geri G, Chaara W, Allenbach Y, Rosenzwajg M, Costedoat-Chalumeau N et al (2012) Interleukin-21 modulates Th1 and Th17 responses in giant cell arteritis. Arthritis Rheum 64:2001–2011

    Article  CAS  PubMed  Google Scholar 

  4. Espigol-Frigole G, Corbera-Bellalta M, Planas-Rigol E, Lozano E, Segarra M, Garcia-Martinez A et al (2013) Increased IL-17A expression in temporal artery lesions is a predictor of sustained response to glucocorticoid treatment in patients with giant-cell arteritis. Ann Rheum Dis 72:1481–1487

    Article  CAS  PubMed  Google Scholar 

  5. Samson M, Audia S, Fraszczak J, Trad M, Ornetti P, Lakomy D et al (2012) Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum 64:3788–3798

    Article  CAS  PubMed  Google Scholar 

  6. Ciccia F, Rizzo A, Guggino G, Cavazza A, Alessandro R, Maugeri R et al (2015) Difference in the expression of IL-9 and IL-17 correlates with different histological pattern of vascular wall injury in giant cell arteritis. Rheumatology (Oxford) 54:1596–1604

    Google Scholar 

  7. Carmona FD, Gonzalez-Gay MA, Martin J (2014) Genetic component of giant cell arteritis. Rheumatology (Oxford) 53:6–18

    Article  CAS  Google Scholar 

  8. Carmona FD, Mackie SL, Martin JE, Taylor JC, Vaglio A, Eyre S et al (2015) A large-scale genetic analysis reveals a strong contribution of the HLA class II region to giant cell arteritis susceptibility. Am J Hum Genet 96:565–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bodmer WF (1987) The HLA, system: structure and function. J Clin Pathol 40:948–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hewitt EW (2003) The MHC, class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110:163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cresswell P (1994) Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol 12:259–293

    Article  CAS  PubMed  Google Scholar 

  12. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK et al (2004) Gene map of the extended human MHC. Nat Rev Genet 12:889–899

    Article  Google Scholar 

  13. Traherne JA (2008) Human MHC, architecture and evolution: implications for disease association studies. Int J Immunogenet 35:179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA et al (2010) Nomenclature for factors of the HLA system, 2010. Tissue Antigens 75:291–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Bakker PI, Raychaudhuri S (2012) Interrogating the major histocompatibility complex with high-throughput genomics. Hum Mol Genet 21:R29–R36

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jia X, Han B, Onengut-Gumuscu S, Chen WM, Concannon PJ, Rich SS et al (2013) Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 8, e64683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petersdorf EW (2013) The major histocompatibility complex: a model for understanding graft-versus-host disease. Blood 122:1863–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trowsdale J, Knight JC (2013) Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet 14:301–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS, Jia X et al (2012) Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 44:291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim K, Bang SY, Lee HS, Okada Y, Han B, Saw WY et al (2014) The HLA-DRbeta1 amino acid positions 11-13-26 explain the majority of SLE-MHC associations. Nat Commun 5:5902

    Article  CAS  PubMed  Google Scholar 

  21. Mayes MD, Bossini-Castillo L, Gorlova O, Martin JE, Zhou X, Chen WV et al (2014) Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am J Hum Genet 94:47–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ombrello MJ, Kirino Y, de Bakker PI, Gul A, Kastner DL, Remmers EF (2014) Behcet disease-associated MHC class I residues implicate antigen binding and regulation of cell-mediated cytotoxicity. Proc Natl Acad Sci U S A 111:8867–8872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez-Gay MA, Amoli MM, Garcia-Porrua C, Ollier WE (2003) Genetic markers of disease susceptibility and severity in giant cell arteritis and polymyalgia rheumatica. Semin Arthritis Rheum 33:38–48

    Article  CAS  PubMed  Google Scholar 

  24. Rauzy O, Fort M, Nourhashemi F, Alric L, Juchet H, Ecoiffier M et al (1998) Relation between HLA DRB1 alleles and corticosteroid resistance in giant cell arteritis. Ann Rheum Dis 57:380–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gonzalez-Gay MA, Garcia-Porrua C, Llorca J, Hajeer AH, Branas F, Dababneh A et al (2000) Visual manifestations of giant cell arteritis. Trends and clinical spectrum in 161 patients. Medicine 79:283–292

    Article  CAS  PubMed  Google Scholar 

  26. Weyand CM, Hunder NN, Hicok KC, Hunder GG, Goronzy JJ (1994) HLA-DRB1 alleles in polymyalgia rheumatica, giant cell arteritis, and rheumatoid arthritis. Arthritis Rheum 37:514–520

    Article  CAS  PubMed  Google Scholar 

  27. Dababneh A, Gonzalez-Gay MA, Garcia-Porrua C, Hajeer A, Thomson W, Ollier W (1998) Giant cell arteritis and polymyalgia rheumatica can be differentiated by distinct patterns of HLA class II association. J Rheumatol 25:2140–2145

    CAS  PubMed  Google Scholar 

  28. Cid MC, Ercilla G, Vilaseca J, Sanmarti R, Villalta J, Ingelmo M et al (1988) Polymyalgia rheumatica: a syndrome associated with HLA-DR4 antigen. Arthritis Rheum 31:678–682

    Article  CAS  PubMed  Google Scholar 

  29. Weyand CM, Hicok KC, Hunder GG, Goronzy JJ (1992) The HLA-DRB1 locus as a genetic component in giant cell arteritis. Mapping of a disease-linked sequence motif to the antigen binding site of the HLA-DR molecule. J Clin Invest 90:2355–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Combe B, Sany J, Le Quellec A, Clot J, Eliaou JF (1998) Distribution of HLA-DRB1 alleles of patients with polymyalgia rheumatica and giant cell arteritis in a Mediterranean population. J Rheumatol 25:94–98

    CAS  PubMed  Google Scholar 

  31. Martinez-Taboda VM, Bartolome MJ, Lopez-Hoyos M, Blanco R, Mata C, Calvo J et al (2004) HLA-DRB1 allele distribution in polymyalgia rheumatica and giant cell arteritis: influence on clinical subgroups and prognosis. Semin Arthritis Rheum 34:454–464

    Article  CAS  PubMed  Google Scholar 

  32. Salvarani C, Boiardi L, Mantovani V, Ranzi A, Cantini F, Olivieri I et al (1999) HLA-DRB1, DQA1, and DQB1 alleles associated with giant cell arteritis in northern Italy. J Rheumatol 26:2395–2399

    CAS  PubMed  Google Scholar 

  33. Armstrong RD, Behn A, Myles A, Panayi GS, Welsh KI (1983) Histocompatibility antigens in polymyalgia rheumatica and giant cell arteritis. J Rheumatol 10:659–661

    CAS  PubMed  Google Scholar 

  34. Hansen JA, Healey LA, Wilske KR (1985) Association between giant cell (temporal) arteritis and HLA-Cw3. Hum Immunol 13:193–198

    Article  CAS  PubMed  Google Scholar 

  35. Kemp A, Marner K, Nissen SH, Heyn J, Kissmeyer-Nielsen F (1980) HLA antigens in cases of giant cell arteritis. Acta Ophthalmol 58:1000–1004

    Article  CAS  Google Scholar 

  36. Gonzalez-Gay MA, Rueda B, Vilchez JR, Lopez-Nevot MA, Robledo G, Ruiz MP et al (2007) Contribution of MHC class I region to genetic susceptibility for giant cell arteritis. Rheumatology (Oxford) 46:431–434

    Article  CAS  Google Scholar 

  37. Richardson JE, Gladman DD, Fam A, Keystone EC (1987) HLA-DR4 in giant cell arteritis: association with polymyalgia rheumatica syndrome. Arthritis Rheum 30:1293–1297

    Article  CAS  PubMed  Google Scholar 

  38. Cortes A, Brown MA (2011) Promise and pitfalls of the Immunochip. Arthritis Res Ther 13:101

    Article  PubMed  PubMed Central  Google Scholar 

  39. Saruhan-Direskeneli G, Hughes T, Aksu K, Keser G, Coit P, Aydin SZ et al (2013) Identification of multiple genetic susceptibility loci in Takayasu arteritis. Am J Hum Genet 93:298–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trynka G, Hunt KA, Bockett NA, Romanos J, Mistry V, Szperl A et al (2011) Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet 43:1193–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P et al (2012) High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet 44:1336–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parkes M, Cortes A, van Heel DA, Brown MA (2013) Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet 14:661–673

    Article  CAS  PubMed  Google Scholar 

  43. Carmona FD, Martin J, Gonzalez-Gay MA (2015) New insights into the pathogenesis of giant cell arteritis and hopes for the clinic. Expert Rev Clin Immunol 12:57–66

    Article  PubMed  Google Scholar 

  44. Carmona FD, Gonzalez-Gay MA, Martin J (2015) Genetic analysis of large vessel vasculitis. Nephron 129:3–5

    Article  Google Scholar 

  45. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC et al (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 75:330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Serrano A, Marquez A, Mackie SL, Carmona FD, Solans R, Miranda-Filloy JA et al (2013) Identification of the PTPN22 functional variant R620W as susceptibility genetic factor for giant cell arteritis. Ann Rheum Dis 72:1882–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lenz TL, Deutsch AJ, Han B, Hu X, Okada Y, Eyre S et al (2015) Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet 47:1085–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jacobsen S, Baslund B, Madsen HO, Tvede N, Svejgaard A, Garred P (2002) Mannose-binding lectin variant alleles and HLA-DR4 alleles are associated with giant cell arteritis. J Rheumatol 29:2148–2153

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. David Carmona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carmona, F.D., Martín, J. (2016). HLA System and Giant Cell Arteritis. In: Dammacco, F., Ribatti, D., Vacca, A. (eds) Systemic Vasculitides: Current Status and Perspectives. Springer, Cham. https://doi.org/10.1007/978-3-319-40136-2_9

Download citation

Publish with us

Policies and ethics